Stutter M I, Shand C A, George T S, et al . Recovering phosphorus from soil: A root solution. Environmental Science & Technology, 2012, 46(4): 1977-1978.
[2]
Zhang F S, Wang J Q, Zhang W F, et al . Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 9(5): 915-924.
[3]
Zhang X Z, Yang X B, Li T X, et al . Characteristics of phosphorus uptake and phosphorus fractions in the rhizosphere among different phosphorus efficiency wheat cultivars. Scientia Agricultura Sinica, 2012, 45(15): 3083-3092.
[4]
Yang X B, Zhang X Z, Li T X, et al . Differences in phosphorus utilization efficiency among wheat cultivars. Chinese Journal of Applied Ecology, 2012, 23(1): 60-66.
[5]
Pan X W, Li W B, Zhang Q Y, et al . Assessment on phosphorus efficiency characteristics of soybean genotypes in phosphorus-deficient soils. Agricultural Sciences in China, 2008, 7(8): 958-969.
[6]
Wang Q R, Li J Y, Li Z S, et al . Screening chinese wheat germplasm for phosphorus efficiency in calcareous soils. Journal of Plant Nutrition, 2005, 28(3): 498-505.
[7]
Lambers H, Shane M W, Cramer M D, et al . Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Annals of Botany, 2006, 98(4): 693-713.
[8]
Cui H, Li L Y, Xie X L, et al . Differences in root architecture of several Stylosanthes genotypes and their phosphorus efficiency. Acta Prataculturae Sinica, 2013, 22(5): 265-271.
[9]
Pearse S J, Veneklaas E J, Cawthray G, et al . Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus , despite releasing fewer carboxylates into the rhizosphere. New Phytologist, 2006, 169(3): 515-524.
[10]
Hinsinger P, Betencourt E, Bernard L, et al . P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiology, 2011, 156(3): 1078-1086.
[11]
Liang H L, Shi L, Xu F S, et al . The difference in uptake and utilization of soil insoluble phosphorous for various P efficient genotypes in Brassica napus . Chinese Journal of Oil Crop Sciences, 2007, 29(3): 297-301.
[12]
Chen L, Wang S F, Liu R L, et al . Changes of root morphology and rhizosphere processes of wheat under different phosphate supply. Plant Nutrition and Fertilizer Science, 2012, 18(2): 324-331.
[13]
Gao W X, Zhang L L, Ren W, et al . The changeable characteristics of phosphorus content in rhizosphere soils in different years alfalfa pastures in Hexi Corridor saline soil. Pratacultural Science, 2008, 25(7): 54-58.
[14]
Xue Z Y, Zhou Z Y, Zhan Y Y, et al . Changing characteristics of phosphorus in the rhizosphere soil of the xeromorphic shrubs in arid deserts. Acta Ecologica Sinica, 2010, 30(2): 341-349.
[15]
Liu X, Yan H L, Zhang S X. Differences of rhizosphere characteristics of two P-efficient wheat genotypes on two calcareous soils. Soil and Fertilizer Sciences in China, 2009, (4): 37-39.
[16]
Zhang H W, Huang Y, Ye X S, et al . Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. Plant and Soil, 2009, 320(1-2): 91-102.
[17]
Yu Z G, Zhang S X. Root configuration and rhizosphere characteristics of different maize inbred lines with contrasting P efficiency. Plant Nutrition and Fertilizer Science, 2008, 14(6): 1227-1231.
[18]
Maseko S T, Dakora F D. Rhizosphere acid and alkaline phosphatase activity as a marker of P nutrition in nodulated Cyclopia and Aspalathus species in the Cape fynbos of South Africa. South African Journal of Botany, 2013, 89: 289-295.
[19]
Li Y F, Luo A C, Wei X H, et al . Changes in phosphorus fractions, pH, and phosphatase activity in rhizosphere of two rice genotypes. Pedosphere, 2008, 18(6): 785-794.
[20]
Zhou X B, Huang J G, Zhou Y X, et al . The mechanism on rhizosphere phosphorus activation of two wheat genotypes with different phosphorus efficiency. African Journal of Biotechnology, 2012, 11(7): 1579-1591.
[21]
Yan K, Wang C Q, Li H X, et al . Effects of phosphorus level on the activity of acid phosphatase in roots of hybrid rice and its parents. Chinese Journal of Rice Science, 2010, 24(1): 43-48.
[22]
Wasaki J, Maruyama H, Tanaka M, et al . Overexpression of the LASAP 2 gene for secretory acid phosphatase in white lupin improves the phosphorus uptake and growth of tobacco plants. Soil Science and Plant Nutrition, 2009, 55(1): 107-113.
[23]
Yan X L, Liao H, Trull M C, et al . Induction of a major leaf acid phosphatase does not confer adaptation to low phosphorus availability in common bean. Plant Physiology, 2001, 125(4): 1901-1911.
[24]
Zhang H W, Huang Y, Ye X S, et al . Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus condition. Scientia Sinica: Life Sciences, 2010, 40(5): 418-427.
Teng Z Q, Li X D, Han H G, et al . Effects of land use patterns on soil phosphorus fractions in the Longzhong part of the Loess Plateau. Acta Prataculturae Sinica, 2013, 22(2): 30-37.
[40]
Liu S, Li T X, Ji L, et al . Phosphorus accumulation and root morphological difference of two ecotypes of Pilea sinofasciata grown in different phosphorus treatments. Acta Prataculturae Sinica, 2013, 22(3): 211-217.
[41]
Marschner P, Solaiman Z, Rengel Z. Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biology and Biochemistry, 2007, 39(1): 87-98.
[42]
Lv Y, Cheng W D, Huang K, et al . Comparison of rhizosphere processes of Vicia sativa and Vicia villosa in response to phosphorus deficiency. Plant Nutrition and Fertilizer Science, 2011, 17(3): 674-679.
[43]
Li Y F, Luo A C, Wu L H, et al . Difference in P utilization from organic phosphate between two rice genotypes and its relations with root secreted acid phosphatase activity. Chinese Journal of Applied Ecology, 2009, 20(5): 1072-1078.
[44]
Zhang H W, Huang Y, Ye X S, et al . Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus conditions. Science China Life Sciences, 2010, 53(6): 709-717.
[45]
Chen Y M, Wang M K, Zhuang S Y, et al . Chemical and physical properties of rhizosphere and bulk soils of three tea plants cultivated in Ultisols. Geoderma, 2006, 136(1): 378-387.
[46]
Wang W H, Zhou X B, Zhou Y X, et al . The mechanism of rhizosphere phosphorus activation of two rape genotypes ( Brassica napus L.) with different P efficiencies. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1379-1387.
[47]
Tabaldi L A, Ruppenthal R, Cargnelutti D, et al . Effects of metal elements on acid phosphatase activity in cucumber ( Cucumis sativus L.) seedlings. Environmental and Experimental Botany, 2007, 59(1): 43-48.
[48]
Nanamori M, Shinano T, Wasaki J, et al . Low phosphorus tolerance mechanisms: phosphorus recycling and photosynthate partitioning in the tropical forage grass, Brachiaria hybrid cultivar mulato compared with rice. Plant and Cell Physiology, 2004, 45(4): 460-469.
[49]
George S T, Gregory P J, Hocking P, et al . Variation in root-associated phosphatase activities in wheat contributes to the utilization of organic P substrates in vitro, but does not explain differences in the P-nutrition of plants when grown in soils. Environmental and Experimental Botany, 2008, 64(3): 239-249.
[50]
Shakhatreh Y, Haddad N, Alrababah M, et al . Phenotypic diversity in wild barley ( Hordeum vulgare L. ssp. spontaneum (C. Koch) Thell.) accessions collected in Jordan. Genetic Resources and Crop Evolution, 2010, 57(1): 131-146.
[51]
Zhang X Z, Yang X B, Li T X, et al . Genotype difference in nitrogen uptake and utilization of wild barley. Journal of Nuclear Agricultural Sciences, 2011, 25(6): 1261-1267.
[52]
Tyagi K, Park M R, Lee H J, et al . Fertile crescent region as source of drought tolerance at early stage of plant growth of wild barley ( Hordeum vulgare L. ssp. spontaneum ). Pakistan Journal of Botany, 2011, 43(1): 475-486.
[53]
Chen G, Krugman T, Fahima T, et al . Chromosomal regions controlling seedling drought resistance in Israeli wild barley, Hordeum spontaneum C. Koch. Genetic Resources and Crop Evolution, 2010, 57(1): 85-99.
[54]
Nevo E. Ecological genomics of natural plant populations: the Israeli perspective. Plant Genomics, Methods in Molecular Biology, 2009, 513: 321-344.
[55]
Nevo E, Chen G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell & Environment, 2010, 33(4): 670-685.
[56]
Yan J, Wang Y, Chen J P. Caryopsis dormancy patterns of wild barley ( Hordeum spontaneum ) and its association with agronomic traits and ecogeographical parameters. Plant Science Journal, 2011, 29(3): 352-361.
[57]
Chen G, Pourkheirandish M, Sameri M, et al . Genetic targeting of candidate genes for drought sensitive gene eibi1 of wild barley ( Hordeum spontaneum ). Breeding Science, 2009, 59(5): 637-644.
[58]
Xu J, Zhang X Z, Li T X, et al . Screening of wild barley genotypes with high phosphorus use efficiency and their rhizosphere soil inorganic phosphorus fractions. Chinese Journal of Applied Ecology, 2013, 24(10): 2821-2830.
[59]
Bao S D. Analytical Methods of Soil and Agrochemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
[60]
Yang X B. Study on screening for P-efficient wheat cultivar and relevant physiological characteristics[D]. Ya’an: Sichuan Agricultural University, 2011.
[61]
Han S F, Deng R L, Xu H R, et al . Characteristics of phosphorus uptake in different rice ( Oryza sativa ) cultivars under phosphorus stress condition. Journal of Plant Genetic Resources, 2007, 8(2): 223-227.
[62]
Li B X, Guo C J, Wang B, et al . Acquisition and utilization characteristics of phosphorus in hybrid F 1 and parents with different P efficiencies under phosphorus deficient condition. Acta Agronomica Sinica, 2006, 32(2): 267-272.
[63]
George T S, Brown L K, Newton A C, et al . Impact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley ( Hordeum vulgare L.). Plant and Soil, 2011, 339(1-2): 113-123.