一类二型Fuchsian群的局部化性质
DOI: 10.3969/j.issn.1674-0696.2011.03.39, PP. 511-513
Keywords: Fuchsian群,p-进数,同余子群,Fuchsiangroup,p-adicnumber,congruencesubgroup.
Abstract:
:?为了讨论整数的整二次型表示,引进整二次型的θ-级数,并发现θ-级数与模群的自守形式有紧密的联系。Fuchsian群及其自守形式是模群与模形式的重要延伸。对于一类二型Fuchsian群H(槡q),这是G(槡q)的一个子群。众所周知,G(槡q)中的元素要落H(槡q)中需要有诸多限制。简化这些限制条件是很有意义的。利用p-局部化方法,首先给出H(槡q)的局部化的性质。然后,给出它与G(槡q)关于模pn的一个关系。
References
[1] | Parson L A.Generalized kloosterman sum and the fourier coefficients of cusp forms[J].Trans.Ams,1976,217: 329-350.
|
[2] | Cangul I N,Singerman D.Normal subgroup of hecke groups and regular maps [J ].Math Proc Phil Soc,1998,123 : 59-74.
|
[3] | Katok S.Fuchsianian Groups[M].Chicago: University of Chicago Press,1992.
|
[4] | Knopp M I,Sheingorn M.On dirichlet series and hecke triangle groups of infinite volume[J].Acta Arithmetia,1996.106(3): 227-244.
|
[5] | Iwaniec H.Spectral methods of automorphic forms [M].Providence: Amer Math Soc,2002.
|
[6] | Rosen D.A class of continued fractions associated with certain properly discontinuous group[J].D.Math.J,1954,21(3): 549-563.
|
[7] | Ozgur N Y.Principal congruence subgroups Hecke Groups H(槡q) [J].Acta Math Sinica,2006,22(2): 383-392.
|
[8] | Macbeath A M.Generators of the linear fractional groups[J]. Pure Math,Amer.Math.Soc,1969,12(1): 14-32.
|
Full-Text