全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

空间大挠度Timoshenko梁的有限元计算方法

DOI: 10.3969/j.issn.1674-0696.2013.04.04, PP. 564-568

Keywords: 几何非线性,大挠度,空间梁,剪切变形,geometricnon-linearity,largedeflection,spacebeam,sheardeformation

Full-Text   Cite this paper   Add to My Lib

Abstract:

:?解析了几何非线性的大挠度Timoshenko梁的变分原理,建立了考虑横向剪切应变的大挠度梁的空间单元刚度矩阵;采用基于梁截面弯矩-曲率关系的宏观有限元方法,直接通过节点坐标系计算内部节点力,提高了大位移、大转动梁的计算精度及效率;编制了考虑单元大转角、大位移和剪切变形影响的非线性有限元程序;通过数值算例验证了该程序的可行性和有效性。

References

[1]  Argyris J H,Balmer H,Doltsinis J. Finite element method-the natural approach[J]. Computer Methods in Applied Mechanics and Engineering,1979,17 /18: 1-106.
[2]  Belytschko T,Hsieh B J. Non-linear transient finite element analysis with convected coordinates [J]. International Journal for Numerical Methods in Engineering,1973,7: 255-271.
[3]  Crisfield M A. A consistent co-rotational formulation for non-linear three-dimensional beam elements [J]. Computer Methods in Applied Mechanics and Engineering,1990,81: 131-150.
[4]  Nour-Omid B,Rankin C C. Finite rotation analysis and consistent linearization using projectors [J]. Computer Methods in Applied Mechanics and Engineering,1991,93: 353-384.
[5]  VBathe K J,Bolourchi S. Large displacement analysis of three-dimensional beam structures [J]. International Journal for Numerical Methods in Engineering,1979,14: 961-986.
[6]  Jetteur P,Cescotto S,Vill De G,et al. Improved nonlinear finite elements for oriented bodies using an extension of Marguerre’s theory[J]. Computers & Structures,1983,17( 1) : 129-137.
[7]  周文伟,曾庆元. 空间曲梁几何非线性有限元分析方法[J]. 长沙铁道学院学报,1998,16( 3) : 1-5.
[8]  Zhou Wenwei,Zeng Qingyuan. Geometric nonlinear finite element analysis of the spatial curved beam in 3-D deformations [J]. Journal of Changsha Railway University,1998,16( 3) : 1-5.
[9]  何欢,陈国平. 空间大挠度梁的有限元动力学响应分析[J]. 南京航空航天大学学报,2005, 37( 2) : 198-202.
[10]  He Huan,Chen Guoping. Finite element method for dynamics response analysis of large deflection of three-dimensional beam [J].Journal of Nanjing University of Aeronautics & Astronautics,2005,37 ( 2) : 198-202.
[11]  周凌远,李乔. 基于UL 法的CR 列式三维梁单元计算方法[J].西南交通大学学报,2006, 41( 6) : 690-695.
[12]  Zhou Linyuan,Li Qiao. Updated Lagrangian co-rotational formulation for geometrically nonlinear FE analysis of 3-D beam element[J]. Journal of Southwest Jiaotong University,2006,41( 6) : 690-695.
[13]  Simo J C,Vu-quoc L. A three-dimensional finite-strain rod model part II: computational aspects[J]. Computer Methods in Applied Mechanics and Engineering,1986,58: 79-116.
[14]  ABAQUS Inc. ABAQUS Theory Manual: Version 6. 18 [M].Pawtucket,USA: ABAQUS Inc. ,2008.
[15]  Simo J C,Armero F. Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes[J]. International Journal for Numerical Methods in Engineering,1992,33: 1413-1449.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133