全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

改进蚁群算法在系统可靠度最优冗余分配的应用

DOI: 10.3969/j.issn.1674-0696.2013.03.40, PP. 543-546

Keywords: 冗余分配,改进蚁群算法,可靠性优化,状态转移规则,信息素更新规则,redundancyallocation,improvedantcolonyalgorithm,reliabilityoptimization,statetransitionrule,pheromoneupdaterule

Full-Text   Cite this paper   Add to My Lib

Abstract:

:?针对蚁群算法在解决NP困难时所存在的极易陷入局部最优值和搜索时间过长的问题,在蚁群算法基础上重新设计状态转移规则和信息素更新规则。实验研究表明:改进后的算法可以有效解决最优冗余分配问题,同时可以在相对短的时间内找到问题的最优解。

References

[1]  黄洪钟,黄文培. 系统可靠性的冗余分配及其神经网络优化方法研究[J]. 西南交通大学学报, 1996, 31(5) : 526-532.
[2]  Huang Hongzhong,Huang Wenpei. A neural optimization approach for redundancy allocation of system reliability[J]. Jouranl of Southwest Jiaotong University,1996,3 1(5) : 526-532.
[3]  Moskowitz F,McLean J B. Some reliability aspects of system design [J]. IRE Transaction on Reliability and Quality Control,1965,8:7-35.
[4]  Mine H. Reliability of physical system[J]. IRE Transaction on Circuit Theory,1965,8: 138-151.
[5]  王正初,李薇薇. 基于粒子群的可靠性优化[J]. 台州学院学报,2006,28(6) : 29-32.
[6]  Wang Zhengchu,Li Weiwei. Optimization of system reliability based on particle group algorithms[J]. Journal of Taizhou University,2006,28(6) : 29-32.
[7]  高尚,杨静宇. 群智能算法及其应用[M]. 北京: 中国水利水电出版社, 2006. Gao Shang,Yang Jingyu. Swarm Intelligence Algorithms and Applications [M]. Beijing: China Waterpower Press,2006.
[8]  程世娟,卢伟,何平. 蚁群算法在冗余系统可靠度最优分配上的应用[J]. 计算机工程与应用,2009,45(15) : 64-66.
[9]  Cheng Shijuan,Lu Wei,He Ping. Ant colony optimization on reliability optimization of redundancy allocation problem[J]. Computer Engineering and Applications,2009,4 5(15) : 64-66.
[10]  张昕,彭宏,郑启伦. 一种改进的蚁群算法[J]. 哈尔滨工程大学学报, 2006,27(增刊1) : 518-522.
[11]  Duan Haibin,Wang Daobo,Zhu Jiaqiang, et al. Development on ant colony algorithm theory and its application[J]. Control and Decision,2004,19(12) : 1321-1340.
[12]  Zhang Xin,Peng Hong,Zheng Qilun. An improved ant colony algorithm[J]. Journal of Harbin Engineering University,2006,27(suppl): 518-522.
[13]  李士勇. 蚁群优化算法及其应用研究进展[J]. 计算机测量与控制,2003,11(12) : 911-913.
[14]  Li Shiyong. Progresses in ant colony optimization algorithm with applications [J]. Computer Measurement & Control, 2003, 11(12) : 911-913.
[15]  Dorigo M,Cgmbardella L,McLean M. Ant colont system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Trans onEvolutionary Computation, 1997,1(1) : 53-66.
[16]  王颖,谢剑英. 一种自适应蚁群算法及其仿真研究[J]. 系统仿真学报, 2002,14(1) : 31-33.
[17]  Wang Ying,Xie Jianying. An adaptive ant colony optimization algorithm and simulation[J]. Journal of System Simulation,2002,14(1) : 31-33.
[18]  段海滨,王道波,朱家强,等. 蚁群算法理论及应用研究的进展[J]. 控制与决策,2 004,19(12) : 1321-1340.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133