全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进蚁群算法的高速公路疏散路径研究

DOI: 10.3969/j.issn.1674-0696.2015.03.19, PP. 86-92

Keywords: 交通工程,疏散路径,蚁群算法,参数分析,trafficengineering,evacuationroute,antcolonyalgorithm,parametricanalysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

:?根据高速公路应急疏散的特点,在交通分配中应用改进蚁群算法模型。首先引入路段交通量和通行时间函数作为算法转移规则的一部分,从而在进行搜索时优先考虑容量大和通行时间较短的路径。其次通过实验分析蚁群算法参数对计算结果和收敛速度的影响,给出了最优的参数组合。最后将最优参数组合应用于改进蚁群算法中,并通过仿真实验将改进蚁群算法与基础蚁群算法的路径搜索结果进行对比。结果表明:采用最优参数组合的蚁群算法不但加快了搜索速度,而且优化了全局最优解,通过基于GIS的高速公路应急疏散系统进行路径分析,得到系统最优的可视化疏散路径。

References

[1]  Hu Yaomin,Liu Weiming.Solving of optimal path problem based on improved ant colony algorithm[J].Journal of South China University of Technology:Natural Science,2010,38(10):105-110.
[2]  胡启国,胡小华,吴泳龙.改进蚁群算法在系统可靠度最优冗余分配的应用[J].重庆交通大学学报:自然科学版,2013,32(3):543-546.
[3]  Hu Qiguo,Hu Xiaohua,Wu Yonglong.Application of improved ant colony algorithm in system reliability optimization of redundancy allocation[J].Journal of Chongqing Jiaotong University:Natural Science,2013,32(3):543-546.
[4]  Bonabeau E,Dorigo M,Theraulaz G.Swarm Intelligence:From Natural to Artificial Systems[M].New York:Oxford University Press,1999,10-32.
[5]  王旭,崔平远,陈阳舟.基于蚁群算法求路径规划问题的新方法及仿真[J].计算机仿真,2005,22(7):60-62.
[6]  叶志伟,郑肇葆.蚁群算法中参数α,β,ρ设置的研究——以 TSP 问题为例[J].武汉大学学报:信息科学版,2004,29(7):597-601.
[7]  Wang Xu,Cui Pingyuan,Chen Yangzhou.A new method and simulation for path planning problem based on ant colony algorithm[J].Computer Simulation,2005,22(7):60-62.
[8]  刘勇.基于蚁群算法的应急救援最优路径研究[D].武汉:中国地质大学,2010.
[9]  Liu Yong.The Research on the Optimal Path of Emergency Rescue Based on Ant Colony Algorithm[D].Wuhan:China University of Geosciences,2010.
[10]  徐勋倩,黄卫.蚂蚁算法处理动态交通网络用户均衡配流问题[J].公路交通科技,2005,1(1):111-114.
[11]  Xu Xunqian,Huang Wei.Ant algorithm for users equilibrium assignment model of dynamic traffic network[J].Journal of Highway and Transportation Research and Development,2005,1(1):111-114.
[12]  孙华灿,李旭宏,刘艳忠,等.容量限制分配的蚁群优化算法[J].东南大学学报:自然科学版,2009,39(1):177-180.
[13]  Sun Huacan,Li Xuhong,Liu Yanzhong,et al.Ant colony optimization arithmetic of capacity restraint traffic assignment[J].Journal of Southeast University:Natural Science,2009,39 (1):177-180.
[14]  詹士昌,徐婕,吴俊.蚁群算法中有关算法参数的最优选择[J].科技通报,2003,19(5):381- 386.
[15]  Zhang Shichang,Xu Jie,Wu Jun.The optimal selection on the parameters of the ant colony algorithm[J].Bulletin of Science and Technology,2003,19(5):381- 386.
[16]  徐红梅,陈义保,刘加光,等.蚁群算法中参数设置的研究[J].山东理工大学学报:自然科学版,2008,22(1):7-11.
[17]  Xu Hongmei,Chen Yibao,Liu Jiaguang,et al.The research on the parameters of the ant colony algorithm[J].Journal of Shandong University of Technology:Natural Science,2008,22(1):7-11.
[18]  Ye Zhiwei,Zheng Zhaobao.Configuration of parameters α,β,ρ in ant algorithm[J].Geomatics and Information Science of Wuhan University,2004,29(7):597-601.
[19]  胡耀民,刘伟铭.基于改进型蚁群算法的最优路径问题求解[J].华南理工大学学报:自然科学版,2010,38(10):105-110.
[20]  王颖,谢剑英.一种自适应蚁群算法及其仿真研究[ J].系统仿真学报,2002,14(1):31-33.
[21]  Wang Ying,Xie Jianying.An adaptive ant colony optimization algorithm and simulation[J].Journal of System Simulation,2002,14 (1):31-33.
[22]  覃刚力,杨家本.自适应调整信息素的蚁群算法[J].信息与控制,2002,31(3):198-201.
[23]  Tan Gangli,Yang Jiaben.An improved ant colony algorithm based on adaptively adjusting pheromone [J].Information and Control,2002,31(3):198-201.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133