全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三维多回波流动补偿定量磁化率成像(QSM)方法研究

DOI: 10.11938/cjmr20150306, PP. 450-461

Keywords: 磁共振成像(MRI),定量磁化率成像(QSM),流动补偿,三维多回波梯度回波,流动伪影

Full-Text   Cite this paper   Add to My Lib

Abstract:

定量磁化率成像(QSM)利用一般成像技术舍弃的相位信息得到局部磁场变化特性,通过复杂的场到源反演计算,可直接得到定量的磁化率图,它广泛应用于测量血氧饱和度、脑部微出血、铁沉积、组织钙化等方面.然而,梯度磁场中流动会引起相位错误,并且产生显著的流动伪影,最终得到错误的QSM图像.为了矫正流动的影响,该文在3T磁共振系统上实现了三维多回波流动补偿梯度回波序列,并用该序列采集流动水模和志愿者颅脑数据.流动水模和颅脑数据均显示,流动补偿能够明显矫正相位错误,消除流动伪影.颅脑横断位QSM结果证明,流动补偿序列可以消除血液流动引起的QSM的错误,提高QSM的准确性.

References

[1]  Haacke E M, Xu Y, Cheng Y C, et al. Susceptibility weighted imaging (SWI)[J]. Magn Reson Med, 2004, 52(1): 612-618.
[2]  Liu T. Spincemaille P, de Rochefort L, et al. Calculation of susceptibility through multiple orientation sampling (COS-MOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI[J]. Magn Reson Med, 2009, 61(1): 196-204.
[3]  Liu T, Wisnieff C, Lou M, et al. Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping[J]. Magn Reson Med, 2013, 69(2): 467-476.
[4]  Ferdinand S, Andreas D, Berengar W L, et al. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?[J]. Neuroimage, 2011, 54(4): 2 789-2 807.
[5]  de Rochefort L, Liu T, Kressler B, et al. Quantitative susceptibility map reconstruction from MR phase data using bayesianregularization: validation and application to brain imaging[J]. Magn Reson Med, 2010, 63(1): 194-206.
[6]  Li J Q, Chang S X, Liu T, et al. Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping[J]. Magn Reson Med, 2012, 68(5): 1 563-1 569.
[7]  Wang A-li(王阿莉), Lin Jian-zhong(林建忠), Liu Wei-jun(刘伟俊), et al. Quantitative susceptibility mapping(定量磁化率成重建方法及其应用)[J]. Chinese J Magn Reson(波谱学杂志), 2014, 31(1): 133-154.
[8]  Bilgic B, Pfefferbaum A, Rohlfing T W, et al. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping[J]. Neuroimage, 2012, 59(3): 2 625-2 635.
[9]  Tan H, Liu T, Wu Y, et al. Evaluation of iron content in human cerebral cavernous malformation using quantitative
[10]  susceptibility mapping[J]. Invest Radiol, 2014, 49(7): 498-504.
[11]  Lim I A, Faria A V, Li X, et al. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures[J]. Neuroimage, 2013, 82: 449-469.
[12]  Deistung A, Schweser F, Wiestler B, et al. Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma[J]. PLoS One, 2013, 8(3): e57924.
[13]  Chen W, Zhu W, Kovanlikaya I, et al. Intracranial calcifications and hemorrhages: Characterization with quantitative susceptibility mapping[J]. Radiology, 2014, 270(2): 496-505.
[14]  Liu T, Surapaneni K, Lou M, et al. Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping[J]. Radiology, 2012, 262(1): 269-278.
[15]  Ge Y, Zhang Z, Lu H, et al. Characterizing brain oxygen metabolism in patients with multiple sclerosis with T2-relaxation-under-spin-tagging MRI[J]. J Cereb Blood Flow Metab, 2012, 32(3): 403-412.
[16]  Nordsmark M, Bentzen S M, Rudat V, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study[J]. Radiother Oncol, 2005, 77(1): 18-24.
[17]  Leenders K L, Beaney R P, Brooks D J, et al. Dexamethasone treatment of brain tumor patients: effects on regional cerebral blood flow, blood volume, and oxygen utilization[J]. Neurology, 1985, 35(11): 1 610-1 616.
[18]  Baron J C, Bousser M G, Rey A, et al. Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study with 15O positron emission tomography[J]. Stroke, 1981, 12(4): 454-459.
[19]  Sobesky J, Zaro W O, Lehnhardt F G, et al. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke[J]. Stroke, 2005, 36(5): 980-985.
[20]  Heiss W D, Kracht L, Grond M, et al. Early [(11)C] Flumazenil/H(2)O positron emission tomography predicts irreversible ischemic cortical damage in stroke patients receiving acute thrombolytic therapy[J]. Stroke, 2000, 31(2): 366-369.
[21]  Haacke E M, Tang J, Neelavalli J, et al. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation[J]. J Magn Reson Imaging, 2010, 32(3): 663-676.
[22]  Ferdinand S,Karsten S, Andreas D, et al. Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain[J]. Neuroimage, 2012, 62(3): 2 083-2 100.
[23]  Xu B, Liu T, Spincemaille P, et al. Flow compensated quantitative susceptibility mapping for venous oxygenation imaging[J]. Magn Reson Med, 2013, 72(2): 438-445.
[24]  Haacke E M. Magnetic Resonance Imaging: Physical Principle and Sequence Design (2nd ed.)[M]. America: John Wiley &Sons, 1999.
[25]  Yamada K, Naruse S, Nakajima K, et al. Flow velocity of the cortical vein and its effect on functional brain MRI at 1.5 T: preliminary results by cine-MR venography [J]. J Magn Reson Imaging, 1997, 7(2): 347-352.
[26]  Dong Fang(董芳), Pei Meng-chao(裴梦超), Wang Qian-feng(王前锋), et al. Gradient echo imaging of the human brain: respiratory induced artifacts and navigator echo correction(颅脑梯度回波成像: 呼吸伪影和导航回波矫正)[J]. Chinese J Magn Reson(波谱学杂志), 2014, 31(3): 321-330.
[27]  Chavhan G B, Babyn P S, Thomas B, et al. Principles, techniques, and applications of T2*-based MR imaging and its special applications[J]. Radiographics, 2009, 29(5): 1 433-1 449.
[28]  Liu Z, Liao H, Yin J, et al. Using R2* values to evaluate brain tumours on magnetic resonance imaging: preliminary results[J]. Eur Radiol, 2014, 24(3): 693-702.
[29]  Liu T, Xu W, Spincemaille P, et al. Accuracy of the morphology enabled dipole inversion (MEDI) algorithm for quantitative susceptibility mapping in MRI[J]. IEEE Trans Med Imaging, 2012, 31(3): 816-824.
[30]  Liu J, Liu T, de Rochefort L, et al. Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map[J]. Neuroimage, 2012, 59(3): 2 560- 2 568.
[31]  Liu T, Liu J, de Rochefort L, et al. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging[J]. Magn Reson Med, 2011, 66(3): 777-783.
[32]  Comroe J H Jr. Textbook the Lung: Clinical Physiology and Pulmonary Function Tests (2nd ed.)[M]. Chicago: Year Book Medical Publishers, 1955.
[33]  Wang X F, Zhao W J. Measurement of multi-wavelength pulse oxygen saturation based on dynamic spectroscopy[J]. Spectrosc Spect Anal, 2014, 34(5): 1 323-1 326.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133