全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
兵工学报  2010 

改进偏最小二乘法在航空煤油的近红外光谱分析中的应用

, PP. 1106-1109

Keywords: 光电子学与激光技术,980nm单模半导体激光器,高功率,低发散角

Full-Text   Cite this paper   Add to My Lib

Abstract:

?采用经过优化的新型大光腔结构,设计出低发散角的980nm半导体激光器,利用分子束外延系统生长出应变InGaAs量子阱半导体激光器材料,并制作出980nm单模半导体激光器。器件在3μm条宽,750μm腔长时,100mA电流下室温连续输出功率达到70mW以上。激光器的最大斜率效率为0.89W/A.垂直方向远场发散角为28°.器件在250mA工作电流下输出功率达到190mW.器件在70℃温度下仍可以正常工作。采用经过优化的新型大光腔结构,设计出低发散角的980nm半导体激光器,利用分子束外延系统生长出应变InGaAs量子阱半导体激光器材料,并制作出980nm单模半导体激光器。器件在3μm条宽,750μm腔长时,100mA电流下室温连续输出功率达到70mW以上。激光器的最大斜率效率为0.89W/A.垂直方向远场发散角为28°.器件在250mA工作电流下输出功率达到190mW.器件在70℃温度下仍可以正常工作。

References

[1]  [10] Verdiell J M, Ziari M, Welch D F. Low-loss coupling of 980 nm GaAs laser to cleaved single mode fibre[J]. Electron Lett, 1996, 32 (19):1817-1818.
[2]  [11] Lin G, Yen S T, Lee C P, et al. Extremely small vertical far-field angle of InGaAs-AlGaAs quantum-well lasers with specially designed cladding structure[J]. IEEE Photon Technol Lett, 1996, 8 (12):1588-1590.
[3]  [12] O'Brien P A, Skovguard P M W, Mcinerney J G, et al. Broad area semiconductor lasers with improved near and far fields using enhanced current spreading[J]. Electron Lett, 1998, 34:1943-1944.
[4]  [13] 徐遵图, 杨国文, 徐俊英, 等. MBE 生长高光功率转换效率InGaAs/GaAs/AlGaAs应变量子阱激光器[J].半导体学报, 1999,20(3):194-199.
[5]  [14] YANG Guo-wen, XU Jun-ying, XU Zun-tu, et al. Theoretical investigation on quantum well lasers with extremely low vertical divergence and low threshold current[J]. J App l Phys, 1998, 83 (1): 8.
[6]  [15] ZHU Xiao-peng, XU Zun-tu, ZHANG Jing-ming, et al. A single mode 980 nm InGaA/GaA/A lGaAs large optical cavity quantum well laser with low vertical divergence angle[J]. Chinese Journal of Semiconductors,2002, 23(4): 342-346.
[7]  [16] 徐遵图,徐俊英,杨国文,等 InGaAs/GaAs/AlGaAs应变量子阱激光器[J].中国激光, 1999,26(5):7-11.
[8]  [17] 余波,盖红星,韩军,等. 应变InGaAs/GaA量子阱MOCVD生长优化及其在980 nm半导体激光器中的应用[J]. 量子电子学报,2005,22(1):81-84.
[9]  [1] Laidig W D, Caldwell P J, Peng C K. Strained layer quantum well injection laser[J]. Appl Phys Let, 1984,44: 653-465.
[10]  [2] Laidig W D, Lin Y F, Caldwell P J. Properties of InxGa1-xAs-GaAs strained-layer quantum-well-heterostructure injection lasers[J]. J Appl Phys, 1985,57: 33-36.
[11]  [3] Adams A R. Band-structure engineering for low-threshold high-efficiency semiconductor lasers[J]. Electron Lett, 1986, 22:249-251.
[12]  [4] Yablonovitc E, Kane E O. Reduction of lasing threshold current density by the lowering valence band effective mass[J]. J Lightwave Technol, 1986, LT-4:504-506.
[13]  [5] Kolbas R M, Anderson N G, Yang Y J. Strained-layer InGaAs-GaAs-AlGaAs photo-pumped and current injection lasers[J]. IEEE J Quantum Electron, 1988,24: 1605-1613.
[14]  [6] Beernink K J, York P K, Coleman J J. Dependence of threshold current density on quantum well composition for strained-layer InGaAs-GaAs lasers by metalorganic chemical vapor deposition[J]. Appl Phys Lett,1989, 55: 2585-2587.
[15]  [7] Chand N, Becker E E, Dutta N K. Excellent uniformity and very low ((50 A/cm2) threshold current density strained InGaAs quan-
[16]  [8] Wu M C, Chen Y K, Hong M, et al. High-temperature operation of periodic index separate confinement heterostructure quantum well laser[J]. Appl Phys Lett, 1991, 59:2784-2786.
[17]  [9] Dutta N K, Lopata J, Cho A Y. Performance characteristics of GaInAs/GaAs large optical cavity quantum well lasers[J]. Electron Lett, 1991, 27:680- 682.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133