全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
兵工学报  2010 

侵彻混凝土弹体磨蚀的若干研究进展

, PP. 950-966

Keywords: 爆炸力学,质量损失,高速侵彻,粘结基靶,磨损,局部侵蚀,摩擦,熔化

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在侵彻混凝土和岩石加固与防护的深埋目标的过程中,弹体需保证尽可能小的变形以保持结构完整性,其理论模型常假设为刚性体;而真实弹体随侵彻速度增加,质量损失和局部侵蚀(简称磨蚀)造成的损失不断加剧,故不再能看作刚性体。弹体磨蚀过程会显著影响弹体侵彻性能,导致弹体破坏或失效,故磨蚀研究十分必要。从实验研究、经验及理论模型分析和数值模拟角度,总结了弹体侵彻粘结基靶体(混凝土或岩石)时,磨蚀的相关研究成果,并提出了对未来研究方向的建议。

References

[1]  [26] Klepaczko J R. Surface layer thermodynamics of steel penetrators at high and very high sliding velocities,A709014[R]. Washington :Storming Media,2001.
[2]  [27] Klepaczko J R. Thermodynamics and kinetics of wear in KE penetrators[R]. Shalimar:University of Florida,2003.
[3]  [28] Makinson J D,Weins W N,Snyder T W,et al. Diffracting particle size analysis of martensite- retained Austenite microstructures[J]. Advances in X-Ray Analysis,2000,43:326-331.
[4]  [29] 陈小伟.动能深侵彻弹的力学设计(Ⅰ):侵彻/穿甲理论和弹体壁厚分析[J].爆炸与冲击,2005,25(6):499-505.
[5]  [1] Lundgren R G. High velocity penetrators,conf-9411142-1[R]. Monterey:American Institute of Aeronautics and Astronautics Missile Sciences,1994.
[6]  [3] Silling S A,Forrestal M J. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets[J]. International Journal of Impact Engineering,2007,34(11):1814-1820.
[7]  [6] Cinnamon J D,Jones S E,House J W,et al. A one-dimensional analysis of rod penetration[J]. International Journal of Impact Engineering,1992,12(2): 145-166.
[8]  [7] Chen X W,Li Q M. Transition from non-deformable projectile penetration to semi-hydrodynamic penetration[J]. Journal of Engineering Mechanics,2004,130(1): 123-127.
[9]  [8] Birkhoff G,MacDougall D P,Pugh E M,et al. Explosive with lined cavities[J]. Journal of Applied Physics,1948,19(6):563-582.
[10]  [9] Eichelberger R J. Experimental test of the theory of penetration by metallic jets[J]. Journal of Applied Physics,1956,27(1): 63-68.
[11]  [10] Forrestal M J,Piekutowski A J. Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0 km/s[J]. International Journal of Impact Engineering,2000,24(1):57-67.
[12]  [11] Hazell P J,Fellow N A,Hetherington J G. A note on the behind armour effects from perforated alumina/aluminum targets[J]. International Journal of Impact Engineering,1998,21(7): 589-595.
[13]  [12] Piekutowski A J,Forrestal M J,Poormon K L,et al. Penetration of 6061-T6511 aluminum targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0 km/s[J]. International Journal of Impact Engineering,1999,23(1): 723-734
[14]  [18] Chen X W,He L L,Yang S Q. Modeling on mass abrasion of kinetic energy penetrator[J]. European Journal of Mechanics:A/Solids,2010,29(1): 7-17.
[15]  [19] Jerome D M,Tynon R T,Wilson L L,et al. Experimental observations of the stability and survivability of ogive-nosed, high-strength steel alloy projectiles in cementious materials at striking velocities from 800-1 800 m/s[C]∥ Proceedings of the 3rd Joint Classified Ballistics Symposium,San Diego:Professional Engineering Publishing,2000:1-4.
[16]  [22] Zhao J,,Chen X W,Jin F N,et al. Depth of penetration of high-speed penetrator with including the effect of mass abrasion[J]. International Journal of Impact Engineering,2010 ,37(9):971-979.
[17]  [24] Jones S E,Foster J C,Toness O A,et al. An estimate for mass loss from high velocity steel penetrators[C]∥ Proceedings of the ASME PVP-435 Conference on Thermal-Hydraulic Problems,Sloshing Phenomena,and Extreme Loads on Structures,New York:ASME,2002,422:227-237.
[18]  [25] Klepaczko J R,Hughes M L. Scaling of wear in kinetic energy penetrators[J]. International Journal of Impact Engineering,2005,31(4):435-459.
[19]  [2] Forrestal M J,Frew D J,Hanchak S J,et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering,1996,18(5):465-476.
[20]  [4] Alekseevskii V P. Penetration of a rod into a target at high velocity[J]. Combustion,Explosive and Shock Waves,1966,2(2):63-66.
[21]  [5] Tate A. A theory for the deceleration of long rods after impact[J]. Journal of the Mechanics and Physics of Solids,1967,15(6):387-399.
[22]  [13] Khoda-rahmi H,Fallahi A,Liaghat G H. Incremental deformation and penetration analysis of deformable projectile into semi-infinite target[J].International Journal of Solids and Structures, 2006,43(3-4):569-582.
[23]  [14] Chen X W,Li Q M,Zhang F J,et al. Investigation of the structural failure of penetration projectiles[J]. International Journal of Protective Structures,2010,1(1):41-66.
[24]  [15] Frew D J,Hanchak S J,Green M L,et al. Penetration of concrete targets with ogive-nose steel rods[J]. International Journal of Impact Engineering,1998,21(6): 489-497.
[25]  [16] 何翔,徐翔云,孙桂娟,等. 弹体高速侵彻混凝土效应的实验研究[J].爆炸与冲击,2010,30(1): 1-6.
[26]  [17] Montgomery R S. Friction and wear at high sliding speeds[J]. Wear,1976,36(3): 275-298.
[27]  [20] 陈小伟,杨世全,何丽灵.动能侵彻弹体的质量侵蚀模型分析[J].力学学报,2009,41(5):739-747.
[28]  [21] 赵军,陈小伟,金丰年,等.考虑头形磨损变化的动能弹极限侵彻深度研究[J].力学学报,2010,42(2)::212-218.
[29]  [23] Jones S E,Toness O,Jerome D M ,et al. Normal penetration of semi-infinite targets by ogive-nose projectiles, including the effects of blunting and erosion[C]∥Proceeding of the ASME-PVP-421 Conference on Thermal Hydraulics,Liquid Sloshing,Extreme Loads,and Structural Response,New York :AMSE,2001,421:53-59.
[30]  [30] Davis R N,Neely A M,Jones S E. Mass loss and blunting during high-speed penetration[J]∥Journal of Mechanical Engineering Science,2004,218(9):1053-1062.
[31]  [31] Jones S E,Hughes M L,Toness O A,et al. A one-dimensional analysis of rigid-body penetration with high-speed friction[J]. Journal of Mechanical Engineering Science,2003,217(4):411-422.
[32]  [34] Lim S C,Ashby M F. Overview No.55 Wear-mechanism maps[J]. Acta Metallurgica,1987,35(1):1-24.
[33]  [35] Molinari A,Estrin Y,Mercier S. Dependence of the coefficient of friction on the sliding conditions in the high velocity range[J]. Journal of Tribology,1999,121(1):35-41.
[34]  [43] Davis R N,Jones S E,Hughes M L. High-speed penetration of concrete using a new analytical model of velocity-dependent friction[C]∥ ASME 2003 Pressure Vessels and Piping Conference,Cleveland :ASME,2003,454:111-116.
[35]  [44] Bai Y L,Dobb B. Adiabatic Shear Localization[M]. Oxford:Pergamon Press,1992.
[36]  [45] Batra R C,Kim C H. Effect of thermal conductivity on the initiation, growth and bandwidth of adiabatic shear bands[J]. International Journal of Engineering Science,1991,29(8):949-960.
[37]  [46] Klepaczko J R,Lipinski P,Molinari A. An analysis of the thermoplastic catastrophic shear in some metals[C]∥ DGM Informationsgesellschaft mbH,Impact Loading and Dynamic Behaviour of Materials,Melbourne :CSA,1988,2:695-704.
[38]  [47] Klepaczko J R. Experimental investigation of adiabatic shear banding at different impact velocities,A308352[R]. France:Metz University,1991.
[39]  [48] Klepaczko J R,Rezaig B. A numerical study of adiabatic shear banding in mild steel by dislocation mechanics based constitutive relations[J]. Mechanics of Materials,1996,24(2):125-139.
[40]  [49] Marchand A,Duffy J. An experimental study of the formation process of adiabatic shear bands in a structural steel[J]. Journal of the Mechanics and Physics of Solids,1988,36(3):251-283.
[41]  [51] Shavki T G. The phenomenon of shear strain localization in dynamic viscoplasticity[J]. Applied Mechanics Reviews,1992,45(3S):S46-61.
[42]  [52] Klepaczko J R. On the critical impact velocity in plastic shearing[C]∥International Conference on Metallurgical and Materials,1995:413.
[43]  [53] Klepaczko J R,Klosak M. Numerical study of the critical impact velocity in shear[J]. European Journal of Mechanics:A/Solids,1999,18(1): 93-113.
[44]  [56] Hanagud S H. Thermomechanics of Impact & Penetration,FA9550-04-1-0193[R]. Technical Report,2004.
[45]  [62] McGlaun J M,Thompson S L,Elrick M G. CTH: a three-dimensional shock wave physics code[J]. International Journal of Impact Engineering ,1990,10(1-4):351-360.
[46]  [32] Jones S E,Davis R N,Hughes M L. Penetration with high-speed friction[C]∥ ASME 2002 Pressure Vessels and Piping Conference,Vancouver:ASME,2002,435:255-262.
[47]  [33] Cowan R S,Winer W O. Frictional heating calculations[S]. Materials Park. OH:ASM International,1992:39-44.
[48]  [36] Carslaw H S,Jaeger J C. Conduction of heat in solids[M]. Oxford :Clarendo Press,1959.
[49]  [37] Kubaschewski O,Evans E L. Metallurgical thermochemistry[M]. 3rd ed. London:Pergamon Press,1958.
[50]  [38] Kubaschewski O,Alcock C B. Metallurgical thermochemistry[M]. 5th ed. Oxford:Pergamon Press,1979.
[51]  [39] Forrestal M J,Longcope D B,Norwood F R. A model to estimate forces on conical penetrators into dry porous rock[J]. Journal of Applied Mechanics,1981,48(1):25-29.
[52]  [40] Forrestal M J,Norwood F R,Longcope D B. Penetration into targets described by locked hydrostats and shear strength[J]. International Journal of Solids and Structures,1981,17(9):915-924.
[53]  [41] Luk V K,Forrestal M J. Penetration into semi-infinite reinforced concrete targets with spherical and ogival nose projectiles[J]. International Journal of Impact Engineering,1987,6(4):291-301.
[54]  [42] He L L,Chen X W,He X. Parametric studies on mass loss of penetrator[J]. Acta Mechanica Sinica,2010,(5):341-348.
[55]  [50] Molinari A,Clifton R J. Analytical characterization of shear localization in thermoplastic materials[J]. Journal of Applied Mechanics,1987,54:806-812
[56]  [54] Meyers M A. Dynamic behavior of materials[M]. US:John Wiley & Sons,1994.
[57]  [55] Hanagud S H. Thermomechanics of impact and penetration,F49620-02-1-0367[R]. Technical Report,2002.
[58]  [57] Beissel S R,Johnson G R. An abrasion algorithm for projectile mass loss during penetration[J]. International Journal of Impact Engineering ,2000,24(2):103-116.
[59]  [58] Beissel S R,Johnson G R. A three-dimensional abrasion algorithm for projectile mass loss during penetration[J]. International Journal of Impact Engineering ,2002,27(7):771-789.
[60]  [59] Johnson G R,Stryk R A,Holmquist T J,et al. Numerical algorithms in a Lagrangian hydrocode,WL-TR-1997-7039[R]. Walton Beach :US Air Force,1997.
[61]  [60] Flis W J. Fully automatic rezoning for a finite-element hydrocode in 2D and 3D[C]∥ Proceedings of 17th International Symposium on Ballistics,South Africa:Midrand,1998.
[62]  [61] Anderson C E. From fire to ballistics: a historical retrospective[J]. International Journal of Impact Engineering ,2003,29(1):13-67.
[63]  [63] Scheffler D R. Modeling non-eroding perforation of an oblique aluminum target using the Eulerian CTH hydrocode[J]. International Journal of Impact Engineering ,2005,32(1-4):461-472.
[64]  [64] 陈小伟.穿甲/侵彻问题的若干工程研究进展[J].力学进展,2009,39(3):316-351.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133