[2] Newkirk B L, Taylor H D. Shaft whipping due to oil action in journal bearings[J]. General Electric Review,1925, 28:559-568.
[2]
[3] Poritsky H. Contribution to the theory of oil whip [J]. Journal of Applied Mechanics, 1953, 75(8): 1153-1161.
[3]
[4] Pinkus O. Experimental investigation of resonant whip[J]. Trans ASME, 1956, 78: 975-983.
[4]
[5] Myers C J. Bifurcation theory applied to oil whirl in plain cylindrical journal bearings[J]. Journal of Applied Mechanics, 1984,51: 244-250.
[5]
[6] Hollis P, Taylor D L. Hopf bifurcation to limit cycles in fluid film bearings[J]. Journal of Tribology, 1986,108: 184-189.
[6]
[7] Horattas G A, Adams M L, Abdel Magied M F, et al. Experimental investigation of dynamic nonlinearities in rotating machinery[C]∥Proc ASME DETC 97, Sacramento, 1997: 14-17.
[7]
[13] Hohenbichler M, Rackwitz R. Sensitivity and importance measures in structural reliability[J]. Civ Eng Syst, 1986,3(4):203-209.
[8]
[15] Karamchandani A, Cornell C A. Sensitivity estimation within first and second order reliability methods[J]. Structure Safety,1992,11(2):95-107.
[9]
[16] Wu Y T. Computational methods for efficient structural reliability and reliability sensitivity analysis[J]. AIAA J, 1994, 32(8): 1717-1723.
[10]
[17] Wei Chen, Jin R, Sudjianto A. Analytical variance-based global sensitivity analysis in simulation-based design under uncertainty[J]. Transactions of the ASME Journal of Mechanical Design,2005,127(5):875-886.
[22] Zhao Y G, Ono T. Moment method for structural reliability[J]. Struct Saf, 2001, 23(6): 47-75.
[15]
[23] Melchers R E, Ahammed M. A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability[J]. Computers & Structures, 2004, 82 (1): 55-61.
[16]
[1] Newkirk B L. Shaft whipping[J]. General Electric Review, 1924, 27:169-178.
[17]
[8] Deepak S T, Noah S T. Experimental verification of subcritical whirl bifurcation of a rotor supported on a fluid film bearing[J]. Journal of Tribology, 1998, 120: 605-609.
[18]
[9] Guo Z, Kirk R G. Instability boundary for rotor-hydrodynamic bearing systems[J]. Journal of Vibration and Acoustic, 2003, 125(4): 417-422.
[19]
[10] Guo Z, Kirk R G. Instability boundary for rotor-hydrodynamic bearing systems, Part 2: rotor with external flexible damped support[J]. Journal of Vibration and Acoustic, 2003,125(4): 423-426.
[20]
[11] Inayat-Hussain J I. Continuation method applied to whirl instability in journal bearings[C]∥Proc. 11th World Congress in Mechanism and Machine Science, Tianjin, 2003: 18–21.
[21]
[12] JING Jian-ping, MENG Guang, SUN Yi, et al. On the non-linear dynamic behaviour of a rotor-bearing system[J]. Journal of Sound and Vibration, 2004, 274:1031-1044.
[22]
[14] Bjerager P, Krenk S. Parametric sensitivity in first order reliability theory[J]. J Eng Mech, ASCE, 1989,115(7): 1577-1582.