[1] | [1] Johnson G R, Cook W H. A constitutive model and data for meta
|
[2] | [2] Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive re
|
[3] | [3] Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals a
|
[4] | [4] Wallace D C. Nature of the process of overdriven shocks in metals[J]. P
|
[5] | [8] Straub G K. Elastic shear modulus: fits to data and extrapolation to larg
|
[6] | [11] Ortiz M, Molinari A E. Effect of strain hardening and rate sensitivity o
|
[7] | [12] Tong W, Ravichandran G. Inertial effects on void growth in porous vi
|
[8] | [13] Wu X Y, Ramesh K T, Wright T W. The dynamic growth ofa single void in a
|
[9] | [14] Thomason P F. Ductile spallation fracture and the mechanics of void grow
|
[10] | [15] Tonks D L, Zurek A K, Thissel W R. Void coalescence model for ductile da
|
[11] | [16] Bai Y L, Xia M F, Ke F J, et al. Statistical microdamage mechanics and d
|
[12] | [17] Pardoen T, Hutchinson J W. An extended model for void growth and coa
|
[13] | [18] Gologanu M, Leblond J B, Perrin G, et al. Theoretical models for void co
|
[14] | [19] Benzerga A A. Mircomechanics of coalescence in ductile fracture[J]. Jo
|
[15] | [20] Ragab A R. A model for ductile fracture based on internal necking of sph
|
[16] | [21] Gao X, Kim J. Modeling of ductile fracture: significance of void coalesc
|
[17] | [22] 马东方,陈大年,吴善幸,等. 高导无氧铜动态本构关系对于单轴冲击拉
|
[18] | [25] Tonks D L. Deviatoric stresses and plastic strain rates in strong shock
|
[19] | [26] Steinberg D J, Lund C M. A constitutive model for strain rates from 10
|
[20] | [27] Preston D L, Tonks D L, Wallace D C. Model of plastic deformation for ex
|
[21] | [28] Cliften R J. Response of materials under dynamic loading[J]. Internati
|
[22] | [29] Chen D N, Fan C L, Hu J W, et al. Mechanical yielding and strength behav
|
[23] | [30] Chen D N, Yu Y Y, Yin Z H, et al. A modified Cochran-Banner spall model
|
[24] | [33] Rajedran A M. High strain rate behavior of metals. Ceramics and Concrete
|
[25] | [34] Chen D N, Al-Hassani STS, Sarumi M, et al. Crack straining-based spal
|
[26] | [35] 陈大年,胡金伟,金扬辉,等. 高导无氧铜临界冲击拉伸速度的实验与数
|
[27] | [36] Hallquist J O. LS-DYNA keywords use’s manual (Version 970)[M]. USA:
|
[28] | [37] 陈大年,尹志华. 对膨胀壳体材料失稳的一种简化处理[J]. 爆炸与冲击
|
[29] | [23] Hu J W, Jin Y H, Chen D N, et al. Measurement of critical impact velocit
|
[30] | [24] Johnson G R, Holmquist T J. Evaluation of cylinder-impact test data for
|
[31] | [5] Bernstein D, Godfrey C, Klein A, et al. Research on manganin pressure tra
|
[32] | [6] Dremin A N, Kanel G I. Compression and rarefaction waves in shock-compre
|
[33] | [7] Chen D N, Fan C L, Xie S G, et al. Study on constitutive relations and sp
|
[34] | [9] Rule W K, Jones S E. A revised form for the Johnson-Cook strength mo
|
[35] | [10] Curran D R, Seaman L, Shockey D A. Dynamic failure of solids
|
[36] | [J]. Physics Reports, 1987, 147:253-388.
|
[37] | [J]. International Journal of Impact Engineering, 2005, 31(7): 1106-1118.
|
[38] | [31] Cochran S, Banner D. Spall studies in uranium[J]. Journal of Applied P
|
[39] | [32] Chen D N, Tan H, Yu Y Y, el at. A void coalescence-based spall model[J
|
[40] | [R], 1992, AD-A252979.
|