全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
兵工学报  2010 

冲击载荷下延性材料的动态本构关系与动态断裂

, PP. 725-734

Keywords: 爆炸力学,冲击动力学,动态本构模型,空穴聚集,层裂模型,单轴冲击拉伸,断裂试验,空穴

Full-Text   Cite this paper   Add to My Lib

Abstract:

?基于Y/G及G/B为常数的假设,构建了7种高压与高应变率本构模型,采用所构建的基于Y/G及G/B为常数的假设,构建了7种高压与高应变率本构模型,采用所构建的7种本构模型对于高导无氧铜(OFHC)的平面冲击波试验进行了数值模拟。结果表明,平面冲击波载荷下OFHC的屈服强度对于压力、密度、温度以及塑性应变的依赖性是本构描述的关键。由Hopkinson试验取得的OFHC高应变率本构模型,并不适合描述平面冲击波载荷下的本构特性。采用层裂过程中的应力松弛方程,建立了一种基于空穴聚集的延性层裂模型,依赖于应力的层裂空隙度方程被耦合计及损伤的总体控制方程。数值模拟了多种材料的平面冲击致层裂试验。采用Hopkinson拉伸装置和一种基于一级气体炮的高速冲击拉伸断裂装置,研究了OFHC铜杆在一系列冲击拉伸速度下的断裂。一种受单轴冲击拉伸荷载的中心含椭球空穴的样本体积单元用于数值模拟空穴的增长与失稳,以空穴形状演化为判据,比较了空穴失稳时的单元平均径向应变与无凹槽杆的冲击断裂应变。

References

[1]  [1] Johnson G R, Cook W H. A constitutive model and data for meta
[2]  [2] Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive re
[3]  [3] Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals a
[4]  [4] Wallace D C. Nature of the process of overdriven shocks in metals[J]. P
[5]  [8] Straub G K. Elastic shear modulus: fits to data and extrapolation to larg
[6]  [11] Ortiz M, Molinari A E. Effect of strain hardening and rate sensitivity o
[7]  [12] Tong W, Ravichandran G. Inertial effects on void growth in porous vi
[8]  [13] Wu X Y, Ramesh K T, Wright T W. The dynamic growth ofa single void in a
[9]  [14] Thomason P F. Ductile spallation fracture and the mechanics of void grow
[10]  [15] Tonks D L, Zurek A K, Thissel W R. Void coalescence model for ductile da
[11]  [16] Bai Y L, Xia M F, Ke F J, et al. Statistical microdamage mechanics and d
[12]  [17] Pardoen T, Hutchinson J W. An extended model for void growth and coa
[13]  [18] Gologanu M, Leblond J B, Perrin G, et al. Theoretical models for void co
[14]  [19] Benzerga A A. Mircomechanics of coalescence in ductile fracture[J]. Jo
[15]  [20] Ragab A R. A model for ductile fracture based on internal necking of sph
[16]  [21] Gao X, Kim J. Modeling of ductile fracture: significance of void coalesc
[17]  [22] 马东方,陈大年,吴善幸,等. 高导无氧铜动态本构关系对于单轴冲击拉
[18]  [25] Tonks D L. Deviatoric stresses and plastic strain rates in strong shock
[19]  [26] Steinberg D J, Lund C M. A constitutive model for strain rates from 10
[20]  [27] Preston D L, Tonks D L, Wallace D C. Model of plastic deformation for ex
[21]  [28] Cliften R J. Response of materials under dynamic loading[J]. Internati
[22]  [29] Chen D N, Fan C L, Hu J W, et al. Mechanical yielding and strength behav
[23]  [30] Chen D N, Yu Y Y, Yin Z H, et al. A modified Cochran-Banner spall model
[24]  [33] Rajedran A M. High strain rate behavior of metals. Ceramics and Concrete
[25]  [34] Chen D N, Al-Hassani STS, Sarumi M, et al. Crack straining-based spal
[26]  [35] 陈大年,胡金伟,金扬辉,等. 高导无氧铜临界冲击拉伸速度的实验与数
[27]  [36] Hallquist J O. LS-DYNA keywords use’s manual (Version 970)[M]. USA:
[28]  [37] 陈大年,尹志华. 对膨胀壳体材料失稳的一种简化处理[J]. 爆炸与冲击
[29]  [23] Hu J W, Jin Y H, Chen D N, et al. Measurement of critical impact velocit
[30]  [24] Johnson G R, Holmquist T J. Evaluation of cylinder-impact test data for
[31]  [5] Bernstein D, Godfrey C, Klein A, et al. Research on manganin pressure tra
[32]  [6] Dremin A N, Kanel G I. Compression and rarefaction waves in shock-compre
[33]  [7] Chen D N, Fan C L, Xie S G, et al. Study on constitutive relations and sp
[34]  [9] Rule W K, Jones S E. A revised form for the Johnson-Cook strength mo
[35]  [10] Curran D R, Seaman L, Shockey D A. Dynamic failure of solids
[36]  [J]. Physics Reports, 1987, 147:253-388.
[37]  [J]. International Journal of Impact Engineering, 2005, 31(7): 1106-1118.
[38]  [31] Cochran S, Banner D. Spall studies in uranium[J]. Journal of Applied P
[39]  [32] Chen D N, Tan H, Yu Y Y, el at. A void coalescence-based spall model[J
[40]  [R], 1992, AD-A252979.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133