全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
兵工学报  2011 

流形分离在非均匀圆阵上的应用

, PP. 1113-1117

Keywords: 声学,流形分离技术,任意结构阵列,非均匀圆阵,最小二乘,求根MUSIC

Full-Text   Cite this paper   Add to My Lib

Abstract:

?流形分离技术(MST)将任意结构阵列的阵列流形矢量分解为采样矩阵(只与阵列结构有关)和范德蒙德结构矢量的乘积(只与来波有关),使只适用于均匀线列阵的DOA估计方法可用于任意结构阵列。建立了任意结构阵列模型,选取非均匀圆阵作为研究示例,将MST中采样矩阵的求取转化为最小二乘问题,而后利用root-MUSIC对范德蒙德结构进行DOA估计。仿真分析表明:通过MST,只适用于均匀线列阵的求根类高分辨算法可用于任意结构阵列。

References

[1]  [11] Doron M A, Doron E, Weiss A J. Coherent wideband processing for arbitrary array geometry[J]. IEEE Transaction Signal Process, 1993,41(1):414-417.
[2]  [12] Weisstein E W. Jacobi-anger expansion [OL]∥Wolfram Math World [2010-04-07]. http:∥mathworld.wolfram.com/Jacobi-AngerExpanision.html
[3]  [14] Rubsamen M, Gershman A B. Direction-of-arrival estimation for nonuniform sensor arrays: from manifold separation to Fourier domain MUSIC methods[J]. IEEE Transactions on Signal Processing, 2009,57(2):588-599.
[4]  [16] 王永良. 空间谱估计理论与算法[M]. 北京:清华大学出版社,2004.
[5]  [1] Van Ven B D, Buckley K M. Beamforming: a versatile approach to spatial filtering [J]. IEEE Acoustics, Speech and Signal Processing Magazine,1988,5(2):4-24.
[6]  [2] Van Trees H L. Optimum array processing [M].New York: John Wiley & Sons, 2002.
[7]  [3] Hyberg P, Jansson M, Ottersten B. Array interpolation and bias reduction [J]. IEEE Transaction on Signal Processing, 2004, 52(10): 2711-2720.
[8]  [4] Hyberg P, Jansson M, Ottersten B. Array interpolation and DOA MSE reduction [J]. IEEE Transaction on Signal Processing, 2004, 53(12): 4464-4471.
[9]  [5] Doron M A, Doron E. Wavefield modeling and array processing. Ⅰ: Spatial sampling[J]. IEEE Trans Signal Process, 1994, 42(10):2549-2559.
[10]  [6] Doron M A, Doron E. Wavefield modeling and array processing .Ⅱ: Algorithms[J]. IEEE Transaction Signal Process,1994,42(10):2560-2570.
[11]  [7] Doron M A, Doron E. Wavefield modeling and array processing. Ⅲ: Resolution capacity[J]. IEEE Trans Signal Process,1994,42(10):2560-2570.
[12]  [8] Belloni F, Richter A, Belloni F, Koivunen V. Performance of root-MUSIC algorithm using real-world arrays[C]∥The 14th Europe Signal Processing Conference, Florence:[s.n.], 2006.
[13]  [9] Richter A, Belloni F, Koivunen V. DOA and polarization estimation using arbitrary polarimetric array configurations[C]∥IEEE Workshop Sensor Array and Multichannel Processing, Waltham: IEEE, 2006.
[14]  [10] Richter A, Belloni F, Koivunen V. DOA estimation via manifold separation for arbitrary array structures[J]. IEEE,2007,55(10):4800-4810.
[15]  [13] Richter A, Belloni F, Koivunen V. Low complexity azimuth and elevation estimation for arbitrary array configurations[C]∥ICASSP, 2009, UK: IEEE, 2009:2185-2188.
[16]  [15] Zhuang J, Li W, Manikas A. Fast root-MUSIC for arbitrary arrays[J]. Electronics Letters 21st, 2010,46(2):57-58.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133