全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
兵工学报  2012 

高应变率下延性金属中微孔洞贯通行为的数值分析

, PP. 1095-1100

Keywords: 固体力学,高应变率,微孔洞贯通,延性金属,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

?采用有限元分析方法,研究了延性金属材料动态拉伸断裂过程中微孔洞之间贯通行为,讨论了初始孔洞间韧带距离和加载应变速率的影响。通过实时跟踪测量微孔洞长大过程中的形状改变,定量判断微孔洞开始贯通时刻。计算结果显示微孔洞从独立长大向微孔洞贯通转变开始的临界韧带距离约为0.5倍微孔洞实时直径,其对初始微孔洞间韧带距离和加载应变速率不敏感。从物理机制上看,微孔洞间贯通行为是通过塑性应变场相互作用实现的,但孔洞间韧带区域的塑性应变场需要达到一个临界阈值才能驱动微孔洞开始贯通。在材料中微孔洞统计均匀分布的假定条件下,指出临界孔洞间韧带距离(ILDc)判据和临界孔洞体积分数(fc)判据在物理本质是一致的,可以相互转换。

References

[1]  [2] Johnson J N. Dynamic fracture and spallation in ductile solids[J]. Journal of Applied Physics, 1981,52: 2812-2825.
[2]  [6] Curran D R, Seaman L, Shockey D A. Dynamic failure of solids[J]. Physics Reports, 1987, 147: 253-388.
[3]  [7] Tvergarrd V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metal., 1984, 27:1-15.
[4]  [13] Seppl E T, Belak J, Rudd R E. Three-dimensional molecular dynamic simulation of void coalescence during dynamic fracture of ductile metals[J]. Physics Review B, 2005,71:064112.
[5]  [14] Qi M L, He H L. Simulation of critical behavior on damage evolution[J]. Chinese Physics B, 2010, 19(3): 036201-5.
[6]  [1] Antoun T, Seaman L, Curran D R, et al. Spall fracture[M]. Berlin: Springer, 2003.
[7]  [3] Molinari A, Wright T W. A physical model for nucleation and early growth of voids in ductile materials under dynamic loading[J]. Journal of the Mechanics and Physics of Solids, 2005, 53: 1476-1504.
[8]  [4] Chen D, Tan H, Yu Y, et al. A void coalescence-based spall model[J]. International Journal of Impact Engineering, 2006,32(11): 1752-1767.
[9]  [5] Czarnota C, Mercier S, Molinari A. Modeling of nucleation and void growth in dynamic pressure loading, application to spall test in tantalum[J]. International Journal of Fracture, 2006,141(1-2):177-194.
[10]  [8] Brock W, Sun D Z, Honign A. Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic materials [J]. International Journal Plasticity, 1995,11(8):971-989.
[11]  [9] Pardoen T, Hutchinson J W. An extended model for void growth and coalescence[J]. Journal of the Mechanics and Physics of Solids, 2000, 48: 2467-2512.
[12]  [10] Brown L M, Embury J D. The initiation and growth of void at second phase particles[C]∥Proceedings 3rd International Conference on Strength of Metals and Alloys. London: Institute of Metals,1973.
[13]  [11] Horstemeyer M F, Matalanis M M, Sieber A M, et al. Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence[J]. International Journal Plasticity, 2000, 16: 979-1015.
[14]  [12] Seppl E T, Belak J, Rudd R E. Onset of void coalescence during dynamic fracture of ductile metals[J]. Physics Review Letters, 2004,93(24):245503.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133