[1] Utturkar Y, Wu J, Wang G, et al. Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion[J]. Progress in Aerospace Sciences, 2005, 41(7): 558-608.
[4] Hosangadi A, Ahuja V. Numerical study of cavitation in cryogenic fluids[J]. Journal of Fluid Engineering, 2005, 127(2): 267-281.
[5]
[5] Zhang X, Qiu L, Qi H, et al. Modeling liquid hydrogen cavitating flow with the full cavitation model[J]. International Journal of Hydrogen Energy, 2008, 33(23): 7197-7206.
[6]
[6] Cao X, Zhang X, Qiu L, et al. Validation of full cavitation model in cryogenic fluids[J]. Chinese Sci Bull, 2009, 54(10): 1633-1640.
[7]
[7] Hord J. Cavitation in liquid cryogens, Ⅲ-Ogives, NASA CR-2242[R]. USA: NASA, 1973.
[8]
[8] Merkle C, Feng J, Buelow P. Computational modeling of dynamics of sheet cavitation[C]∥Proceedings of the 3rd International Symposium on Cavitation, Grenoble, France, 1998.
[9]
[9] Singhal A, Athavale M. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.
[10]
[10] Launder B, Spalding D. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2): 269-289.
[11]
[11] Yakhot V, Orszag S. Renormalization group analysis of turbulence: I. basic theory[J]. Journal of Scientific Computing, 1986, 1(1): 1-51.
[12]
[12] Yakhot V, Orszag S, Thangam S. Development of turbulence models for shear flows by a double expansion technique[J]. Physics of Fluids A: Fluid Dynamics, 1992, 4(7): 1510-1520.
[13]
[13] Johansen S, Wu J, Shyy W. Filter-based unsteady RANS computations[J]. International Journal of Heat and Fluid Flow, 2004, 25(1): 10-21.
[14]
[14] Shi S, Wang G. Thermal effects on cryogenic cavitating flows around an axisymmetric ogive[J]. International Journal of Fluid Machinery and Systems, 2010, 3(4): 324-331.
[15]
[15] Tseng C, Wei Y, Wang G, et al. Modeling of turbulent, isothermal and cryogenic cavitation under attached conditions[J]. Acta Mechanica Sinica, 2010, 26(3): 325-353.