全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
兵工学报  2014 

基于降维可视化技术的结构可靠性灵敏度分析

DOI: 10.3969/j.issn.1000-1093.2014.11.020, PP. 1876-1882

Keywords: 应用统计数学,结构可靠性,可靠性灵敏度,设计点,降维可视化技术,iHLRF法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对多维隐式结构可靠性问题,应用降维可视化技术进行可靠性灵敏度分析。基于iHLRF法求解设计点,根据模型计算精度确定有限差分步长。用一条直线将平面分为安全域和失效域两部分,通过计算直线初始位置附近数据点对应的响应量,来调整并确定直线的最终位置,根据直线上方数据点提供的信息计算可靠性灵敏度。提出的可靠性灵敏度分析方法的准确性不受维度以及非线性的影响,且效率较高。最后计算了两个结构系统的可靠度及各个变量的可靠性灵敏度,为结构设计提供了理论依据。算例表明了文中所给出的计算公式的正确性和有效性。

References

[1]  [6] Balesdent M, Morio J, Marzat J. Kriging-based adaptive importance sampling algorithms for rare event estimation[J]. Structural Safety, 2013, 44(9): 1-10.
[2]  [7] 刘瞻,张建国. 基于优化Kriging模型和重要抽样法的结构可靠度混合算法[J]. 航空学报,2013, 34(6): 1347-1355.
[3]  [8] Bucher C. Asymptotic sampling for high-dimensional reliability analysis[J]. Probabilistic Engineering Mechanics, 2009, 24(4): 504-510.
[4]  [1] Hurtado J E, Alvarez D A.A method for enhancing computational efficiency in Monte Carlo calculation of failure probabilities by exploiting FORM results[J]. Computers & Structures, 2013, 117(2): 95-104.
[5]  [2] Zhao Y G, Ono T. A general procedure for first/second-order reliability method (FORM/SORM)[J]. Structural Safety, 1999, 21(2): 95-112.
[6]  [3] Zhao Y G, Ono T. New approximations for SORM: Part 1[J]. Journal of Engineering Mechanics, 1999, 125(1): 79-85.
[7]  [4] Zhao Y G, Ono T. New approximations for SORM: part II[J]. Journal of Engineering Mechanics, 1999, 125(1):86-93.
[8]  [5] Bourinet J M, Deheeger F, Lemaire M. Assessing small failure probabilities by combined subset simulation and support vector machines[J]. Structural Safety, 2011, 33(6): 343-353.
[9]  [9] Sichani M T, Nielsen S R K, Bucher C. Efficient estimation of first passage probability of high-dimensional nonlinear systems[J]. Probabilistic Engineering Mechanics, 2011, 26(4): 539-549.
[10]  [10] Pettit C L, Wilson D K. Full-field sensitivity analysis through dimension reduction and probabilistic surrogate models[J]. Probabilistic Engineering Mechanics, 2010, 25(4): 380-392.
[11]  [11] Zhang X, Pandey M D. Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method[J]. Structural Safety, 2013, 43(3): 28-40.
[12]  [12] Valdebenito M A, Pradlwarter H J, Schuller G I. The role of the design point for calculating failure probabilities in view of dimensionality and structural nonlinearities[J]. Structural Safety, 2010, 32(2): 101-111.
[13]  [13] Hurtado J E. Dimensionality reduction and visualization of structural reliability problems using polar features[J]. Probabilistic Engineering Mechanics,2012, 29: 16-31.
[14]  [14] Liu P L, Der Kiureghian A. Optimization algorithms for structural reliability[J]. Structural Safety, 1991, 9(3): 161-177.
[15]  [15] 李皓川,孙志礼,闫明. 高精密滚动轴承游隙的可靠性保障研究[J]. 东北大学学报:自然科学版, 2014, 35(10):1516-1520.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133