全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
兵工学报  2014 

双柔性空间机械臂动力学建模与控制

DOI: 10.3969/j.issn.1000-1093.2014.07.010, PP. 1003-1008

Keywords: 航空航天科学技术基础学科,空间机械臂,柔性关节,柔性杆,自然坐标法,绝对节点坐标法,轨迹跟踪

Full-Text   Cite this paper   Add to My Lib

Abstract:

?大多数研究者在空间机械臂动力学建模时,只考虑了关节柔性或者臂杆柔性,并且通常采用假设模态法对臂杆的变形进行描述,但该方法仅适用于小变形情况。基于这种情况,采用自然坐标法对柔性关节进行建模和绝对节点坐标法对柔性臂杆进行建模,得到了既包含关节柔性又包含臂杆柔性的空间机械臂动力学方程,并能精确地描述臂杆的小变形以及大变形。利用5次多项式对关节轨迹进行规划,通过逆动力学得到关节的前馈驱动力矩;采用PID控制策略,作为反馈输入。在二连杆柔性关节柔性杆机械臂上进行数值仿真。仿真结果表明:该控制策略在实现关节轨迹跟踪控制的同时,也能有效减弱机械臂的振动。

References

[1]  [1] 于登云, 潘博, 孙京. 空间机械臂关节动力学建模与分析的研究进展[J]. 航天器工程, 2010, 19(2): 1-10.
[2]  [2] Spong M W. Modeling and control of elastic joint robots[J]. Journal of Dynamic Systems, Measurement and Control, 1987, 109(1): 310-319.
[3]  [3] Bahrami M, Rahi A. Tip dynamic response of elastic joint manipulators subjected to a stochastic base excitation[J]. JSME International Journal: Series C, 2003, 46(4): 1502-1508.
[4]  [4] 戈新生, 崔玮, 赵秋玲. 刚柔性耦合机械臂轨迹跟踪与振动抑制[J]. 工程力学, 2005, 22(6): 188-191.
[5]  [5] 梁捷,陈力. 柔性空间机械臂末端运动及柔性振动的模糊自适应补偿控制[J]. 兵工学报, 2011, 32(1): 45-57.
[6]  [6] Shabana A A. An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies, No.MBS96-1-UIC[R]. US: University of Illinois at Chicago, 1996.
[7]  [7] García De Jalón J, Bayo E. Kinematic and dynamic simulation of multibody systems: the real-time challenge[M]. New York: Springer, 1994.
[8]  [8] García-Vallejo D, Escalona J L, Mayo J, et al. Describing rigid-flexible multibody system using absolute coordinates[J]. Nonli-near Dynamics, 2003,34: 75-94.
[9]  [9] García-Vallejo D, Mayo J, Escalona J L, et al. Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements[J]. Multibody System Dynamics, 2008, 20(1): 1-28.
[10]  [10] Shabana A A, Yakoub R Y. Three dimensional absolute nodal coordinate formulation for beam elements: theory[J]. ASME Journal of Mechanical Design, 2001,123: 606-613.
[11]  [11] Yakoub R Y, Shabana A A. Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications[J]. ASME Journal of Mechanical Design, 2001,123: 614-621.
[12]  [12] García-Vallejo D, Mayo J, Escalona J L, et al. Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2004,35: 313-329.
[13]  [13] 刘铖, 田强, 胡海岩. 基于绝对节点坐标的多柔体系统动力学高效计算方法[J]. 力学学报, 2010, 42(6): 1197-1205.
[14]  [14] Arnold M, Brüls O. Convergence of the generalized-a scheme for constrained mechanical systems[J]. Multibody System Dynamics, 2007,18: 185-202.
[15]  [15] Bottasso C L, Dopico D, Trainelli L. On the optimal scaling of index three DAEs in multibody dynamics[J]. Multibody System Dynamics, 2008, 19(1): 3-20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133