[2] Spong M W. Modeling and control of elastic joint robots[J]. Journal of Dynamic Systems, Measurement and Control, 1987, 109(1): 310-319.
[3]
[3] Bahrami M, Rahi A. Tip dynamic response of elastic joint manipulators subjected to a stochastic base excitation[J]. JSME International Journal: Series C, 2003, 46(4): 1502-1508.
[6] Shabana A A. An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies, No.MBS96-1-UIC[R]. US: University of Illinois at Chicago, 1996.
[7]
[7] García De Jalón J, Bayo E. Kinematic and dynamic simulation of multibody systems: the real-time challenge[M]. New York: Springer, 1994.
[8]
[8] García-Vallejo D, Escalona J L, Mayo J, et al. Describing rigid-flexible multibody system using absolute coordinates[J]. Nonli-near Dynamics, 2003,34: 75-94.
[9]
[9] García-Vallejo D, Mayo J, Escalona J L, et al. Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements[J]. Multibody System Dynamics, 2008, 20(1): 1-28.
[10]
[10] Shabana A A, Yakoub R Y. Three dimensional absolute nodal coordinate formulation for beam elements: theory[J]. ASME Journal of Mechanical Design, 2001,123: 606-613.
[11]
[11] Yakoub R Y, Shabana A A. Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications[J]. ASME Journal of Mechanical Design, 2001,123: 614-621.
[12]
[12] García-Vallejo D, Mayo J, Escalona J L, et al. Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation[J]. Nonlinear Dynamics, 2004,35: 313-329.
[14] Arnold M, Brüls O. Convergence of the generalized-a scheme for constrained mechanical systems[J]. Multibody System Dynamics, 2007,18: 185-202.
[15]
[15] Bottasso C L, Dopico D, Trainelli L. On the optimal scaling of index three DAEs in multibody dynamics[J]. Multibody System Dynamics, 2008, 19(1): 3-20.