全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
兵工学报  2014 

一种基于多元探测器阵列的分块图像压缩传感算法

DOI: 10.3969/j.issn.1000-1093.2014.05.012, PP. 654-661

Keywords: 信息处理技术,压缩传感,图像稀疏与重构,多元探测器,平方约束最小全变分法,等式约束最小全变分法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对压缩传感理论应用于单元探测成像时图像重构时间随图像尺寸增大而迅速增大的问题,提出了一种利用数字微镜和多元探测器进行编码测量,利用最小全变分法进行图像重构的分块图像压缩传感算法,并对重构分块图像进行灰度拉伸,提高了图像的峰值信噪比和结构相似度。仿真实验结果表明:算法具有计算时间短、重构图像质量高的特点,对于16图像分块,至少可缩短40%重构时间;通过分块图像灰度拉伸,重构图像的峰值信噪比和平均结构相似度较不拉伸时分别提高70%和11%.文中算法为高分辨压缩成像的应用研究提供了一种有效的技术参考。针对压缩传感理论应用于单元探测成像时图像重构时间随图像尺寸增大而迅速增大的问题,提出了一种利用数字微镜和多元探测器进行编码测量,利用最小全变分法进行图像重构的分块图像压缩传感算法,并对重构分块图像进行灰度拉伸,提高了图像的峰值信噪比和结构相似度。仿真实验结果表明:算法具有计算时间短、重构图像质量高的特点,对于16图像分块,至少可缩短40%重构时间;通过分块图像灰度拉伸,重构图像的峰值信噪比和平均结构相似度较不拉伸时分别提高70%和11%.文中算法为高分辨压缩成像的应用研究提供了一种有效的技术参考。

References

[1]  [12] Candes E,Romberg J. l1-magic: recovery of sparse signals via convex programming[EB/OL]. [2013-05-07].http:∥users.ece. gatech.edu/justin/l1magic/downloads/l1magic.pdf.
[2]  [13] Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008,25(2):83-91.
[3]  [14] Do T T, Lu Gan, Nguyen N H, et al. Fast and efficient compressive sensing using structurally random matrices [J]. IEEE Transactions on Signal Processing, 2012,60(1):139-154.
[4]  [1] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory,2006,52(4): 1290-1305.
[5]  [2] 陈涛,李正炜,王建立,等. 应用压缩传感理论的单像素相机成像系统[J]. 光学精密工程,2012,20(11): 2523-2530.
[6]  [3] 肖龙龙,刘昆,韩大鹏,等. 压缩感知理论在光学成像中的应用[J]. 应用光学, 2012,33(1): 71-77.
[7]  [4] 冯燕,贾应彪,曹宇明,等. 高光谱图像压缩感知投影与复合正则重构[J]. 航空学报, 2012,33(8):1465-1472.
[8]  [5] Candès E J,Romberg J,Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory,2006,52(2):489-509.
[9]  [6] Elad M. Sparse and redundant representations:from theory to applications in signal and image processing[M]. Berlin,Germany:Springer,2010.
[10]  [7] Dai Q, Sha W. The physics of compressive sensing and the gradient-based recovery algorithms[EB/OL]. [2013-05-07].http:∥arxiv.org/abs/0906.1487.
[11]  [8] Tropp J A,Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory,2007,53(12): 4655-4666.
[12]  [9] Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Signal Processing,2010,4(2):310-316.
[13]  [10] Do T T, Lu Gan,Nguyen N,et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]∥42nd Asilomar Conference on Signals, Systems & Computers. California, US: IEEE,2008: 581-587.
[14]  [11] Needell D,Tropp J A. CoSaMP:iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009,26(3): 301-321.
[15]  [15] 佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006, 11(12): 1758-1763.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133