全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
兵工学报  2014 

基于分数阶傅里叶变换的线性调频脉冲信号波达方向估计

DOI: 10.3969/j.issn.1000-1093.2014.03.020, PP. 421-427

Keywords: 信息处理技术,分数阶傅里叶变换,波达方向估计,宽带线性调频信号,中心频率,脉冲信号

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对宽带线性调频脉冲信号的时宽与观测时宽不等的情况,基于分数阶傅里叶变换(FRFT)提出了一种新的中心频率估计方法,并据此对基于FRFT的MUSIC算法的波达方向(DOA)估计进行了改进。该算法利用线性调频信号在傅里叶变换域良好的能量聚集性,分析了脉冲信号中心频率随着脉冲信号在观测时间内位置的变化规律,并修正了中心频率估计的方法。在相应的分数阶傅里叶域,构造分数阶傅里叶域的方向向量,利用MUSIC算法进行DOA估计。数值仿真验证了该算法对方位估计的有效性,并仿真分析信噪比(SNR)和脉冲信号时间宽度对方位估计结果的影响。随着SNR的增大、脉冲信号时间宽度的增加,方位估计方差减小。

References

[1]  [1] Xiang L, Ye Z, Xu X, et al. Direction of arrival estimation for uniform circular array based on fourth-order cumulants in the presence of unknown mutual coupling[J]. IET Microwaves, Antennas & Propagation, 2008, 2(3): 281-287.
[2]  [2] Liu Z M, Huang Z T, Zhou Y Y. Direction-of-arrival estimation of wideband signals via covariance matrix sparse representation[J]. Signal Processing, 2011, 59(9): 4256-4270.
[3]  [3] Ozaktas H M, Kutay M A, Zalevsky Z. The fractional Fourier transform with applications in optics and signal processing[M]. New York: John Wiley & Sons,2001:117-183.
[4]  [4] Cui Y, Liu K, Wang J. Direction of arrival estimation of coherent wideband LFM signals in multipath environment[C]∥2010 IEEE 10th International Conference on Signal Processing (ICSP). Beijing: IEEE, 2010: 58-61.
[5]  [5] Chong H, Xiaomin Z. DOA estimation of multi-component LFM in complex environment using ESPRIT based on FRFT[C]∥2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Xi’an: IEEE, 2011: 1-4.
[6]  [10] 马艳,罗美玲. 基于分数阶傅里叶变换水下目标距离及速度的联合估计[J].兵工学报,2011,32(8):1030-1053.
[7]  [11] 吴晓涛. 基于分数阶傅里叶变换的信道估计算法研究[D],哈尔滨:哈尔滨工业大学,2010.
[8]  [12] Hsue W L, Pei S C. Rational-ordered discrete fractional Fourier transform[C]∥2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO). Bucharest: IEEE, 2012: 2124-2127.
[9]  [17] 赵兴浩,邓兵,陶然. 分数阶傅立叶变换数值计算中的量纲归一化[J].北京理工大学学报,2005,25(4):360-364.
[10]  [18] 刘峰,徐会法,陶然,等. 分数阶Fourier域多分量LFM信号间的分辨研究,中国科学:信息科学,2012,42(2):136-148.
[11]  [19] 马艳,王瑞,陈航. 一种FRFT变换幅度峰值的快速搜索[C]∥2012鱼雷自导引信技术研讨会论文集.北京:中国造船工程学会水中兵器委员会,2012,9:95-98.
[12]  [6] Jin X, Zhang T, Bai J, et al. DOA estimation of coherent wideband LFM signals based on fractionalFourier transform and virtual array[C]∥2010 3rd International Congress on Image and Signal Processing (ICISP). Yantai: IEEE, 2010: 4380-4384.
[13]  [7] 陶然,周云松. 基于分数阶傅里叶变换的宽带LFM信号波达方向估计新算法[J]. 北京理工大学学报,2005,25(10):895-899.
[14]  [8] 刘小河,王建英,杨美英. 基于分数阶傅里叶变换的宽带LFM相干信号的DOA估计[J].数据采样与处理,2008,23(5):547-550.
[15]  [9] 张艳红,齐林,穆晓敏,等. 基于分数阶傅立叶变换的WLFM信号DOA估计[J].信号处理,2005,21(4):57-60.
[16]  [13] Pei S C, Liu C L, Lai Y C. The generalized fractional Fourier transform[C]∥2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Kyoto: IEEE, 2012: 3705-3708.
[17]  [14] Ko A, Ozaktas H M, Candan C, et al. Digital computation of linear canonical transforms[J].Signal Processing,2008,54(6):2383-2394.
[18]  [15] Oktem F S, Ozaktas H M. Linear algebraic analysis of fractional Fourier domain interpolation[C]∥17th Signal Processing and Communications Applications Conference (SIU) , Antalya:IEEE, 2009: 873-875.
[19]  [16] Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractional Fourier transform[J].IEEE Transactions on Signal Processing, 1996, 44(9):2141-2150.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133