全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
兵工学报  2015 

基于分数阶微积分的裂纹转子系统非线性动力学特性研究

DOI: 10.3969/j.issn.1000-1093.2015.09.026, PP. 1790-1798

Keywords: 机械学,分数阶微积分,裂纹转子,非线性动力学,非线性涡动,故障诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在考虑非线性涡动的情况下,建立了分数阶阻尼裂纹转子系统的非线性动力学模型,并用龙格-库塔法和连分式Euler法对其进行了数值仿真。讨论了分数阶阶次、转子转速和裂纹深度对分数阶阻尼裂纹转子系统非线性动力学特性的影响。研究结果表明:对于具有分数阶特性的转子系统,采用分数阶来建立裂纹转子系统模型,能更好地揭示系统的非线性动力学特性;在相同的裂纹深度和相同的分数阶阶次下,随着转速比的增加,转子系统依次经历混沌、倍周期和周期运动;在相同的转速比和相同的分数阶阶次下,裂纹深度比较小时,引起的转子刚度变化量不大,一般不会出现复杂的分叉与混沌现象;随着裂纹深度的加深,转子的刚度减小,转子系统呈现复杂的振动特性,裂纹故障特征越来越明显,转子系统由单周期运动变换到倍周期运动,二倍频分量占主导地位,同时其他倍频分量也相继出现。这些有价值的结论对转子裂纹的故障诊断提供了参考。

References

[1]  [21] Cottone G, Paola M D, Butera S. Stochastic dynamics of nonlinear systems with a fractional power-law nonlinear term: the fractional calculus approach[J]. Probabilistic Engineering Mechanics, 2011, 26(1): 101-108.
[2]  [22] 王 在华, 胡海岩. 含分数阶导数阻尼的线性振动系统的稳定性 [J]. 中国科学:G辑, 2009, 39(10): 1495-1502.
[3]  [23] Gasch R. A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack[J]. Journal of Sound and Vibration, 1993, 160(2): 313-332.
[4]  [1] Jun O S. Dynamic behavior analysis of cracked rotor based on harmonic motion[J]. Mechanical Systems and Signal Processing, 2004, 30(7): 186-203.
[5]  [2] AL-Shudeifat M A. On the finite element modeling of the asymmetric cracked rotor[J]. Journal of Sound and Vibration, 2013, 332(11): 2795-2807.
[6]  [8] 员险锋, 李志农, 林言丽. 基于非线性输出频率响应函数的裂纹故障诊断方法研究[J]. 机械强度, 2013, 35(2): 133-137.
[7]  [9] 陈雪峰, 向家伟, 董洪波, 等. 基于区间B样条小波有限元的转子裂纹定量识别[J]. 机械工程学报, 2007, 43(3): 123-127.
[8]  [10] Sekhar A S. Crack identification in a rotor system: a model-based approach[J]. Journal of Sound and Vibration, 2004, 270(4/5): 887-902.
[9]  [11] Tenreiro M J A, Silva M F, Barbosa R S, et al. Some applications of fractional calculus in engineering[J]. Mathematical Problems in Engineering, 2010, 2010: 1-34.
[10]  [12] 周激流,蒲亦非,廖科. 分数阶微积分原理及其在现代信号分析 与处理中的应用[M]. 北京:科学出版社, 2010:86-99.
[11]  [13] Alberto S, Pietro C, Alberto C. Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(1): 63-74.
[12]  [14] Richard L M. Fractional calculus models of complex dynamics in biological tissues[J]. Computers & Mathematics with Applications, 2010, 59(5): 1586-1593.
[13]  [15] Roberto G, Federico P. Fractional calculus modelling for unsteady unidirectional flow of incompressible fluids with time-dependent viscosity[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12): 5073-5078.
[14]  [16] 曹军义, 曹秉刚. 分数阶控制器离散方法的评估策略研究[J]. 西安交通大学学报, 2007, 41(7): 842-846.
[15]  [17] 曹军义, 谢航, 蒋庄德. 分数阶阻尼Duffing系统的非线性动力 学特性[J]. 西安交通大学学报, 2009, 43(3): 50-54.
[16]  [18] Rossikhin Y A, Shitikov M Y. Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results[J]. Applided Mechanics Reviews, 2010, 63(1): 1-52.
[17]  [19] 薛士明, 曹军义, 林京, 等. 分数阶阻尼裂纹转子的非线性动力学 特性分析[J]. 西安交通大学学报, 2012, 46(1): 76-80.
[18]  [20] Cao J, Xue S, Lin J, et al. Nonlinear dynamic analysis of a cracked rotor-bearing system with fractional order damping[J]. Journal of Computational and Nonlinear Dynamics, 2013, 8(3):21-34.
[19]  [3] AL-Shudeifat M A, Butcher E R, Stern C R. General harmonic balance solution of a cracked rotor-bearing-disk system for harmonic and sub-harmonic analysis: analytical and experimental approach[J]. International Journal of Engineering Science, 2010, 48(10): 921-935.
[20]  [4] Bachschmid N, Pennacchi P, Tanzi E. A sensitivity analysis of vibrations in cracked turbogenerator units versus crack position and depth [J]. Mechanical Systems and Signal Processing, 2010, 24(3): 844-859.
[21]  [5] Sinou J J. Detection of cracks in rotor based on the 2× and 3× super-harmonic frequency components and the crack-unbalance interactions[J]. Numerical Simulation, 2008, 13(9): 2024-2040.
[22]  [6] Robert G. Dynamic behaviour of the Laval rotor with a transverse crack[J]. Mechanical Systems and Signal Processing, 2008, 22(4): 790-804.
[23]  [7] Stoisser C M, S Audebert. A comprehensive theoretical, numerical and experimental approach for crack detection in power plant rotating machinery[J]. Mechanical Systems and Signal Processing, 2008, 22(4): 818-844.
[24]  [24] Mayes I W, Davies W G R. A method of calculating the vibrational behaviour of coupled rotating shafts containing a transverse crack[C]//Proceedings of the 2nd International Conference on Vibrations in Rotating Machinery. Cambridge, UK: the Institution of Mechanical Engineers,1980:17-27.
[25]  [25] 曾复, 吴昭同, 严拱标. 裂纹转子的分岔与混沌特性分析[J]. 振动与冲击, 2000, 19(1): 40-42.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133