[2] Mathur T, Dutton J C. Velocity and turbulence measurements in a supersonic base flow with mass bleed[J]. AIAA Journal, 1996, 34(6):1153-1159.
[3]
[3] Bourdon C J, Dutton J C. Visualization of a central bleed jet in an axisymmetric compressible base flow[J]. Physics of Fluids, 2003, 15(2):499-510.
[7] Sahu J, Nietubicz C J, Steger J L. Navier-Stokes computations of projectile base flow with and without base injection[J]. AIAA Journal, 1985, 23(9):1348-1355.
[6]
[8] Gibeling H J, Buggeln R C. Projectile base bleed technology part 1:analysis and results,AD-A258459[R]. Glastonbury, CT:Scientific Research Associates, 1992.
[7]
[9] Jachimowski C J. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion, NASA-TP-2791[R].Hampton, VA:Langley Research Center, 1988.
[12] Shin J R, Cho D R, Won S H, et al. Hybrid RANS/LES study of base-bleed flows in supersonic mainstream[C]∥15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, Ohio:AIAA,2008.
[11]
[13] Shin J R, Choi J Y. DES study of base and base-bleed flows with dynamic formulation of DES constant[C]∥49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, Florida:AIAA,2011.
[12]
[14] Menter F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[18] Jachimowski C J. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion, NASA-TP-2791[R].Washington, DC:NASA, 1988.
[17]
[19] Gardiner W C. Combustion chemistry[M]. New York: Springer-Verlag, 1984.