Haack S K, Garchow H, Odelson D A, et al. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Applied and Environmental Microbiology, 1994, 60(7): 2483-2493
Osborne C A, Rees G N, Bernstein Y, et al. New threshold and confidence estimates for terminal restriction fragment length polymorphism analysis of complex bacterial communities. Applied and Environmental Microbiology, 2006, 72(2): 1270-1278
[5]
Denaro R, D’Auria G, Di Marco G, et al. Assessing terminal restriction fragment length polymorphism suitability for the description of bacterial community structure and dynamics in hydrocarbon-polluted marine environments. Environmental Microbiology, 2005, 7(1): 78-87
Roesti D, Gaur R, Johri B N, et al. Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biology and Biochemistry, 2006, 38(5): 1111-1120
[8]
Ramos B, García J A L, Probanza A, et al. Alterations in the rhizobacterial community associated with European alder growth when inoculated with PGPR strain Bacillus licheniformis. Environmental and Experimental Botany, 2003, 49(1): 61-68
[9]
Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19(6): 703-707
[10]
LaMontagne M G, Michel F C, Holden P A, et al. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. Journal of Microbiological Methods, 2002, 49(3): 255-264
Moeseneder M M, Arrieta J M, Muyzer G, et al. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 1999, 65(8): 3518-3525
[14]
Smith C J, Danilowicz B S, Clear A K, et al. T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiology Ecology, 2005, 54(3): 375-380
[15]
Kent A D, Smith D J, Benson B J, et al. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Applied and Environmental Microbiology, 2003, 69(11): 6768-6776
[16]
更多...
[17]
Artursson V, Finlay R D, Jansson J K. Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environmental Microbiology, 2005, 7(12): 1952-1966
[18]
Meyer J R, Linderman R G. Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biology and Biochemistry, 1986, 18(2): 185-190
[19]
Andrade G, Linderman R G, Bethlenfalvay G J. Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant and Soil, 1998, 202(1): 79-87
De Leij F A A M, Sutton E J, Whipps J M, et al. Effect of a genetically modified Pseudomons aureofaciens on indigenous microbial populations of wheat. FEMS Microbiology Ecology, 1994, 13(4): 249-257
[23]
bdo Z, Schuette U M E, Bent S J, et al. Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environmental Microbiology, 2006, 8(5):929-938
[24]
Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Biology Reviews, 1995, 59(1): 143-169