全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cry1Ac抗性亚洲玉米螟对四种Bt蛋白的交互抗性

, PP. 329-334

Keywords: 亚洲玉米螟,Bt,Cry1Ac,交互抗性,抗性治理

Full-Text   Cite this paper   Add to My Lib

Abstract:

亚洲玉米螟Ostriniafurnacalis(Guen?e)是转Bt基因玉米的靶标害虫,为探明其对Bt抗性的演化,在室内开展了Cry1Ac蛋白胁迫下的抗性汰选及Cry1Ac抗性品系对4种Bt蛋白的交互抗性研究。通过在人工饲料中添加Cry1Ac蛋白饲养亚洲玉米螟27代,获得了对Cry1Ac产生14.0倍抗性的品系ACB-AcR,同时对Cry1Ab蛋白亦产生了6.3倍的交互抗性,继续在恒压下连续汰选至82代,对Cry1Ac的相对抗性达到48.9倍,而对Cry1Ab的交互抗性倍数没有提高。进一步测定和比较4种Bt蛋白Cry1Ac、Cry1Ab、Cry1Ah和Cry1Ie对敏感品系ACB-BtS和抗性品系ACB-AcR的毒力,结果显示,ACB-AcR对Cry1Ah的相对抗性倍数达14.9倍,有显著的交互抗性;对Cry1Ab的相对抗性倍数为4.3倍,交互抗性水平较低;对Cry1Ie的相对抗性倍数为0.9,即无交互抗性。4种蛋白对抗、感品系的EC50表明,ACB-AcR品系对Cry1Ac蛋白产生了显著的抗性,相对抗性达到32.6倍,对Cry1Ah和Cry1Ab有低水平的交互抗性,而对Cry1Ie没有交互抗性。

References

[1]  James C. Global status of commercialized biotech/GM crops: ISAAA: Ithaca NY, 2008: 39
[2]  黄东林, 柏立新, 戴燕, 等. 转Bt基因抗虫棉对亚洲玉米螟抗性的研究. 华东昆虫学报, 2003, 12(2): 45-50
[3]  Li G P, Wu K M, Gould F, et al. Increasing tolerance to Cry1Ac cotton from cotton bollworm, Helicoverpa armigera was confirmed in Bt cotton farming area of China. Ecological Entomology, 2007, 32(4): 366-375
[4]  Huang F N, Buschman L L, Higgins R A, et al. Survival of Kansas Dipel-resistant European corn borer (Lepidoptera:Crambidae) on Bt and non-Bt corn hybrids. Journal of Economic Entomology, 2002, 95(3): 614-621
[5]  Huang F, Leonard B R, Andow D A. Sugarcane borer (Lepidoptera: Crambidae) resistance to transgenic Bacillus thuringiensis maize. Journal of Economic Entomology, 2007, 100(1): 164-171
[6]  Ferr? J, van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 2002, 47: 501-533
[7]  Siqueira H A A, Moellenbeck D, Spencer T, et al. Cross-resistance of Cry1Ab-selected Ostrinia nubilalis (Lepidoptera: Crambidae) to Bacillus thuringiensis δ-endotoxins. Journal of Economic Entomology, 2004, 97(3): 1049-1057
[8]  Zhao J Z, Cao J, Li Y, et al. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nature Biotechnology, 2003, 21(12): 1493-1497
[9]  Wu X Y, Leonard B R, Zhu Y C, et al. Susceptibility of Cry1Ab-resistant and -susceptible sugarcane borer (Lepidoptera: Crambidae) to four Bacillus thuringiensis toxins. Journal of Invertebrate Pathology, 2009, 100: 29-34
[10]  Liu Y J, Wang G Y. The inheritance and expression of cry1A gene in transgenic maize. Acta Botanica Sinica, 2003, 45(3): 253-256
[11]  Liu Y J, Song F P, He K L, et al. Expression of a modified cry1Ie gene in E.coli and in transgenic tobacco confers resistance to corn borer. Acta Biochimica et Biophysica Sinica, 2004, 36: 309-313
[12]  王悦冰, 郎志宏, 张杰, 等. 利用ubi1内含子增强Bt cry1Ah基因在转基因玉米中的表达. 科学通报, 2008, 53(17): 2041-2046
[13]  Robertson J L, Preisler H K. Pesticide bioassays with arthropods, CRC Press, Boca Raton, FL, 1992
[14]  McGaughey W H. Insect resistance to the biological insecticide Bacillus thuringiensis. Science, 1985, 229(4709): 193-195
[15]  Tabashnik B E. Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology, 1994, 39: 47-79
[16]  Huang F, Buschman L L, Higgins R A, et al. Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer. Science, 1999, 284(5416): 965-967
[17]  Bolin P C, Hutchison W D, Andow D A, et al. Long-term selection for resistance to Bacillus thuringiensis Cry1Ac endotoxin in a Minnesota population of European corn borer (Lepidoptera: Crambidae). Journal of Economic Entomology, 1999, 92(5): 1021-1030
[18]  更多...
[19]  Chaufaux J, Seguin M, Swanson J J, et al. Chronic exposure of the European corn borer (Lepidoptera: Crambidae) to Cry1Ab Bacillus thuringiensis toxin. Journal of Economic Entomology, 2001, 94(6): 1564-1570
[20]  Tabashnik B E, Liu Y B, de Maagd R A, et al. Cross-resistance of pink bollworm (Pectinophora gossypiella) to Bacillus thuringiensis toxins. Applied and Environmental Microbiology, 2000, 66(10): 4582-4584
[21]  Li H R, Oppert B, Higgins R A, et al. Susceptibility of Dipel-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae) to individual Bacillus thuringiensis protoxins. Journal of Economic Entomology, 2005, 98(4): 1333-1340
[22]  Bauer L S. Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis. Florida Entomology, 1995, 78(3): 414-443
[23]  Ballester V, Granero F, Tabashnik B E, et al. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Applied and Environmental Microbiology, 1999, 65(4): 1413-1419
[24]  Ruiz de Escudero I, Estela A, Porcar M, et al. Molecular and insecticidal characterization of a Cry1I protein toxic to insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Applied and Environmental Microbiology, 2006, 72(7): 4796-4804
[25]  何康来, 常雪, 常雪艳, 等. 亚洲玉米螟对Cry1Ab蛋白抗性的遗传规律与分子机理. 植物保护, 2007, 33(5): 92-93
[26]  Zhao J Z, Cao J, Collins H L, et al. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proceedings of the National Academy of Sciences of the Unites States of America, 2005, 102(24): 8426-8430
[27]  Pereira E J G, Lang B A, Storer N P, et al. Selection for Cry1F resistance in the European corn borer and cross-resistance to other Cry toxins. Entomologia Experimentalis et Applicata, 2008, 126(2): 115-121

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133