全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

土传黄瓜立枯病高效拮抗菌的筛选鉴定及其生物效应

, PP. 45-50

Keywords: 黄瓜立枯病,立枯丝核菌,拮抗细菌,生物防治

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用平板对峙法从黄瓜根际土壤中分离出的400余株细菌菌株中筛选出16株对立枯丝核菌Rhizoctoniasolani具有拮抗效果的菌株,抑菌带直径在0.81~1.93cm之间。并从中选出3株抑菌带直径在1.6cm以上的菌株N33、N35和N43,结合形态、生理生化特性及16SrDNA序列比对分析,鉴定N33菌株为假单胞菌属Pseudomonassp.,N35和N43菌株为芽胞杆菌属Bacillussp.。通过在黄瓜育苗基质中添加选育的高效拮抗菌株,观测其对黄瓜苗生长的促进作用以及对立枯病的防治作用,3株菌株均具有促进黄瓜苗期生长和防治苗期立枯病的作用,其中N43菌株促生及防病效果均最显著,地上部鲜重比对照处理增加62.16%,防治效果达62%。

References

[1]  周新根, 朱宗源, 汪树俊, 等. 根际微生物对蔬菜苗期立枯丝核菌的生物防治作用. 植物保护学报, 1994, 21(3): 200,214
[2]  沙月霞, 王国珍, 陈惠娟, 等. 水稻立枯病的探讨及分析. 宁夏农林科技, 2007(4):51-53
[3]  Trillas M I, Casanova E, Cotxarrera L, et al. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biological Control, 2006, 39(1): 32-38
[4]  Kai M, Effmert U, Berg G, et al. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Archives of Microbiology, 2007, 187(5): 351-360
[5]  夏伟,张红,颜艳伟,等. 棘孢木霉L4对立枯丝核菌的拮抗机制. 植物保护学报, 2010, 37(5): 477-478
[6]  张慧, 杨兴明, 冉炜, 等. 土传棉花黄萎病拮抗菌的筛选及其生物效应. 土壤学报, 2008, 45(6): 1095-1101
[7]  周而勋,叶永武,林如泉. 拮抗菌的筛选及其对黄瓜苗期立枯病的防治作用. 广东农业科学,2000(1): 44-47
[8]  Huang X Q, Chen L H, Ran W, et al. Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Applied Microbiology and Biotechnology, 2011, 91(3): 741-755
[9]  王刚,李志强,彭娟,等. 利用植物根际细菌生物防治黄瓜立枯病研究. 北方园艺,2009(3):52-54
[10]  Kazempour M N. Biological control of Rhizoctonia solani, the causal agent of rice sheath blight by antagonistics bacteria in greenhouse and field conditions. Plant Pathology Journal, 2004, 3(2): 88-96
[11]  方中达. 植病研究方法 (3版). 北京:中国农业出版社, 1998
[12]  Sands D C, Rovira A D. Isolation of fluorescent pseudomonads with a selective medium. Applied Microbiology, 1970, 20(3): 513-514
[13]  东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京:科学出版社, 2001
[14]  Montealegre J R, Reyes R, Pérez L M, et al. Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electronic Journal of Biotechnology, 2003, 6(2): 115-127
[15]  Kloepper J W, Leong J, Teintze M, et al. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 1980, 286: 885-886
[16]  Glick B R. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 1995, 41(2): 109-117
[17]  陶晶,李晖,李春. 芽孢杆菌组合BCL-8的筛选及其促生抗病效果. 植物保护学报,2009, 36(2):123-128
[18]  Mew T W, Rosales A M. Bacterization of rice plants for control sheath blight caused by Rhizoctonia solani. Phytopathology, 1986, 76(11): 1260-1264
[19]  Leong J. Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annual Review of Phytopathology, 1986, 24(1): 187-209
[20]  更多...
[21]  Neilands J B. Microbial iron compounds. Annual Review of Biochemistry, 1981, 50: 715-731
[22]  Haas D, Defago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 2005, 3(4): 307-319
[23]  布坎南 R E, 吉本斯 N E. 伯杰细菌鉴定手册 (8版). 北京: 科学出版社, 1989

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133