Bateman G L, Ward E, Hornby D, et al. Comparisons of isolates of the take all fungus, Gaeumannomyces graminis var.tritici, from different cereal sequences using DNA probes and non molecular methods. Soil Biology and Biochemistry, 1997, 29(8): 1225-1232
Fouly H M, Wilkinson H T. Detection of Gaeumannomyces graminis varieties using polymerase chain reaction with variety specific primers. Plant Disease, 2000, 84(9): 947-951
Sanguinetti C J, Dias N E, Simpson A J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17(5): 914-921
Wright S. Evolution in Mendelian populations. Genetics, 1931, 16(2): 97-99
[8]
Cook R J. Take all of wheat. Physiological and Molecular Plant Pathology, 2003, 62(2): 73-86
[9]
Anderson J A, Churchill G A, Autrique J E, et al. Optimizing parental selection for genetic linkage maps. Genome, 1993, 36(1): 181-186
[10]
Lebreton L, Lucas P, Dugas F, et al. Changes in population structure of the soilborne fungus Gaeumannomyces graminis var.tritici during continuous wheat cropping. Environmental Microbiology, 2004, 6(11): 1174-1185
[11]
Augustin C, Ulrich K, Ward E, et al. RAPD based inter and intravarietal classification of fungi of the Gaeumannomyces Phialophora complex. Journal of Phytopathology, 1999, 147(2): 109-117
[12]
Bryan G T, Labourdette E, Melton R E, et al. DNA polymorphism and host range in the take all fungus, Gaeumannomyces graminis. Mycological Research, 1999, 103(3): 319-327
[13]
Bryan G T, Daniels M J, Osbourn A E. Comparison of fungi within the Gaeumannomyces Phialophora complex by analysis of ribosomal DNA sequences. Applied and Environmental Microbiology, 1995, 61(2): 681-689
[14]
Freeman J, Ward E, Gutteridge R J, et al. Methods for studying population structure, including sensitivity to the fungicide silthiofam, of the cereal take all fungus, Gaeumannomyces graminis var.tritici. Plant Pathology, 2005, 54(5): 686-698
[15]
Sadeghi L, Alizadeh A, Safaie N, et al. Genetic diversity of Gaeumannomyces graminis var.tritici populations using RAPD and ERIC markers. Journal of Plant Pathology & Microbiology, 2012, 3(7): 143-147
[16]
Rassmann K,Schlotterer C,Tautz D. Isolation of simple sequence loci for use in polymerase chain reaction based DNA fingerprinting. Electrophoresis, 1991, 12(2/3): 113-118
[17]
Tóth G, Gáspári Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research, 2000, 10(7): 967-981
[18]
Kantety R V, La Rota M, Matthews D E, et al. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Molecular Biology, 2002, 48(5/6): 501-510
[19]
Sirjusingh C, Kohn L M. Characterization of microsatellites in the fungal plant pathogen, Sclerotinia sclerotiorum. Molecular Ecology Notes, 2005, 1(4): 267-269
[20]
Yeh F C, Yang R, Boyle T. Popgene version 1.31. Microsoft Window Based Freeware for Population Genetic Analysis, 1999
[21]
Peakall R, Smouse P E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 2006, 6(1): 288-295
[22]
Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States America, 1973, 70(12): 3321-3323
Weber Z, Irzykowska L, Bocianowski J. Analysis of mycelial growth rates and RAPD PCR profiles in a population of Gaeumannomyces graminis var.tritici originating from wheat plants grown from fungicide treated seed. Journal of Phytopathology, 2005, 153(6): 318-324