全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

莲子草假隔链格孢对空心莲子草活性氧代谢的影响

, PP. 279-284

Keywords: 空心莲子草,莲子草假隔链格孢,活性氧,抗氧化酶

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了明确活性氧(ROS)在莲子草假隔链格孢Nimbyaalternantherae侵染空心莲子草过程中的作用,采用氯化硝基四氮唑蓝(NBT)光化学还原法、二氨基联苯胺(DAB)组织染色法和分光光度法测定了莲子草假隔链格孢SF-193侵染空心莲子草后超氧阴离子(O2?-)产生速率、过氧化氢(H2O2)含量、抗氧化酶体系(超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD))活性和丙二醛(MDA)含量。结果显示,接种莲子草假隔链格孢SF-193的叶片经NBT和DAB染色后检测到ROS的大量累积。叶片内的O2?-产生速率和H2O2含量随接种时间显著升高,接种后48h均达到峰值,分别为2.33nmol?min-1?g-1FW和11.78μmol?g-1FW,是对照的2.1倍和2.5倍;SOD、CAT和POD活性均在接种后8h达到峰值,分别为277.75、23.47和444.92U?min-1?g-1FW,之后逐渐下降;MDA含量随接种时间持续上升,72h时达到峰值,为5.20μmol?g-1FW。表明莲子草假隔链格孢侵染空心莲子草打破了ROS产生与清除之间的平衡,导致植物细胞内的ROS迅速上升,对叶片细胞造成严重破坏。

References

[1]  沈国军,徐正浩,俞谷松. 空心莲子草的分布、危害与防除对策. 植物保护,2005,31(3):14-18
[2]  喻大昭,魏守辉,朱文达,等. 空心莲子草对水稻生长的影响及其经济阈值. 植物保护学报,2008,35(1):69-73
[3]  Gilbert R L, Auld B A, Hennecke B R. Leaf and stem spot of Alternanthera philoxeroides (alligatorweed) in Australia caused by Nimbya sp. Plant Pathology, 2005, 54(4): 585
[4]  Demuner A J, Barbosa L C A, Veiga T A M, et al. Phytotoxic constituents from Nimbya alternantherae. Biochemical Systematics and Ecology, 2006, 34(11): 790-795
[5]  向梅梅,何敏生. 莲子草假隔链格孢在不同条件下的生长和产孢能力. 仲恺农业技术学院学报, 1999,12(4):1-5[ZK)]
[6]  周遗品,向梅梅,姜子德,等. 莲子草假隔链格孢毒素的分离纯化与结构鉴定. 高等学校化学学报,2006,27(8):1485-1487[ZK)]
[7]  范兰兰,姜子德,向梅梅. 莲子草假隔链格孢毒素对空心莲子草根尖组织防御酶活性的影响. 华南农业大学学报,2010,31(3):28-31
[8]  郭红莲,陈捷,高增贵,等. 玉米灰斑病抗性机制中活性氧代谢的作用. 植物保护学报,2003,30(2):133-137
[9]  刘瑞恒,付时雨,詹怀宇.氯化硝基四氮唑蓝显色检测超[CM(24*2]氧阴离子自由基的研究.分析测试学报,2008,27(4):355-359
[10]  更多...
[11]  Barreto R, Charudattan R, Pomella A, et al. Biological control of neotropical aquatic weeds with fungi. Crop Protection, 2000, 19(8/10): 697-703
[12]  向梅梅,曾永三,刘任,等. 莲子草假隔链格孢的寄主范围及对空心莲子草的控制作用. 植物病理学报,2002,32(3):286-287
[13]  Pomella A W V, Barreto R W, Charudattan R. Nimbya alternantherae a potential biocontrol agent for alligatorweed, Alternanthera philoxeroides. BioControl, 2007, 52(2): 271-288
[14]  Barreto R W, Torres A N L. Nimbya alternantherae and Cercospora alternantherae: two new records of fungal pathogens on Alternanthera philoxeroides (allegatorweed) in Brazil. Australasian Plant Pathology, 1999, 28(2): 103-107
[15]  陈志谊,王晓艳,罗楚平. 空心莲子草病原真菌的分离筛选及其菌株SF-193种的鉴定. 中国生物防治,2007,23(4):353-357
[16]  王晨芳,黄丽丽,张宏昌,等. 小麦-条锈菌互作过程中活性氧及保护酶系的变化研究. 植物病理学报,2009,39(1):52-60
[17]  Orozco-Cardenas M, Ryan C A. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 6553-6557
[18]  Mukherjee S P, Choudhuri M A. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum, 1983, 58(2): 166-170
[19]  EI-Moshaty F I B, Pike S M, Novacky A J, et al. Lipid peroxidation and superoxide production in cowpea (Vigna unguiculata) leaves infected with tobacco ringspot virus or southern bean mosaic virus. Physiological and Molecular Plant Pathology, 1993, 43(2): 109-119
[20]  Egan M J, Wang Z Y, Jones M A, et al. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(28): 11772-11777
[21]  Ragu S, Faye G, Iraqui I, et al. Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(23): 9747-9752
[22]  Beno-Moualem D, Prusky D. Early events during quiescent infection development by Colletotrichum gloeosporioides in unripe avocado fruits. Phytopathology, 2000, 90(5): 553-559
[23]  景岚,王丽芳,康俊,等.向日葵与锈菌互作过程中活性氧的累积.植物保护学报,2009,36(3):246-250
[24]  喻亮,朱金文,吴志毅,等. 高锰胁迫下草甘膦对空心莲子草体内莽草酸含量和抗氧化酶活性的影响. 农药学学报,2009,11(3):298-303
[25]  Levine A, Tenhaken R, Dixon R, et al. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994, 79: 583-593
[26]  Scandalios J G. The rise of ROS. Trends in Biochemical Sciences, 2002, 27(9): 483-486
[27]  蔚丽珍,张鲁刚,贺少轩,等. 大白菜幼苗叶片抗氧化酶系统对黑腐病菌入侵的反应. 植物病理学报,2010,40(2):122-128
[28]  聂亚锋,陈志谊,刘永锋,等. 假隔链格孢SF-193的产孢特性及其分生孢子对空心莲子草的致病力. 中国生物防治,2009,25(3):260-266
[29]  陈志谊,聂亚锋,刘永峰,等. 假隔链格孢SF-193菌丝的[CM(24*2]生长特性及其寄主选择性. 中国生物防治,2009,25(2):148-154
[30]  聂亚锋,陈志谊,刘永锋,等. 假隔链格孢(Nimbya alternantherae)SF-193防除空心莲子草田间高效使用技术研究. 植物保护,2008,34(3):109-113
[31]  Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930
[32]  张怡,路铁刚. 植物中的活性氧研究概述. 生物技术进展,2011,1(4):242-248
[33]  Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants. Trends in Plant Science, 2004, 9(10): 490-498

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133