全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黑龙江大豆轮作和连作土壤细菌群落多样性比较

, PP. 403-409

Keywords: 大豆,轮作,连作,细菌多样性,16SrDNA克隆文库

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究大豆轮作和连作对土壤细菌群落多样性的影响,提取黑龙江大豆轮作和连作土壤微生物总DNA,采用细菌通用引物27F和1492R扩增了土壤细菌16SrDNA片段,构建了细菌16SrDNA克隆文库,并对文库中的细菌群落多样性进行了分析。通过16SrDNA序列同源性分析,发现76.5%克隆序列与环境中未培养细菌的16SrDNA序列有较高的相似性,仅有23.5%的克隆序列与GenBank数据库中可培养细菌有较高的相似性,表明黑龙江大豆田土壤中的多数细菌尚未培养。系统发育分析表明黑龙江土壤细菌分属于6大类群,其中变形菌Proteobacteria和酸杆菌Acidobacteria所占比例较大,另有少量厚壁菌Firmicutes、放线菌Actinobacteria、芽单胞菌Gemmatimonadetes和未分类的细菌。大豆轮作土壤细菌多样性更为丰富,并以变形菌为优势细菌类群;而大豆连作土壤细菌多样性有所减少,以酸杆菌为优势细菌类群。表明黑龙江大豆田土壤中细菌多样性十分丰富,其种植方式对土壤细菌群落结构影响较大。

References

[1]  Pan Fengjuan, Xu Yanli, Sun Yuqiu, et al. Advance on biological control to soybean cyst nematode by fungi in China. Soybean Bulletin, 2006(4): 15-17 (in Chinese) [潘凤娟, 许艳丽, 孙玉秋, 等. 我国大豆胞囊线虫生防真菌研究现状. 大豆通报, 2006(4): 15-17]
[2]  Liu Shuxia, Pan Dongmei, Wei Guojiang, et al. Current research on controlling soybean cyst nematode by crop rotation. Heilongjiang Science, 2011, 2(1): 35-36, 47 (in Chinese) [刘淑霞, 潘冬梅, 魏国江, 等. 轮作防治大豆 胞囊线虫病的研究现状. 黑龙江科学, 2011, 2(1): 35-36, 47]
[3]  Chen Lijie, Zhu Yan, Liu Bin, et al. Influence of continuous cropping and rotation on soybean cyst nematode and soil nematode community structure. Journal of Plant Protection, 2007, 34(4): 348-351 (in Chinese) [陈立杰, 朱艳, 刘彬, 等. 连作和轮作对大豆胞囊线虫群体数量及土壤线虫群落结构的影响. 植物保护学报, 2007, 34(4): 348-351]
[4]  Wang Kean, Ma Fang, Liu Xiaoying. Preliminary report of influence of different rotation patterns on soybean cyst nematode dynamics. Soybean Bulletin, 2000(3): 12 (in Chinese) [王克安, 马芳, 刘晓英. 不同轮作方式对大豆孢囊线虫消长的影响试验初报. 大豆通报, 2000(3): 12]
[5]  Noller H F, Woese C R. Secondary structure of 16S ribosomal RNA. Science, 1981, 212(4493): 403-411
[6]  Workneh F, van Bruggen A H C. Microbial density, composition, and diversity in organically and conventionally managed rhizophere soil in relation to suppression of corky root of tomatoes. Applied Soil Ecology, 1994, 1(3): 219-230
[7]  Weller D M, Raaijmakers J M, McSpadden Gardener B B, et al. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 2002, 40: 309-348
[8]  Mendes R, Kruijt M, de Bruijn I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 2011, 332: 1097-1100
[9]  Liu Jinbo, Xu Yanli. Current research of soil microbial of successive soybean cropping in China. Chinese Journal of Oil Crop Sciences, 2008, 30(1): 132-136 (in Chinese) [刘金波, 许艳丽. 我国连作大豆土壤微生物研究现状. 中国油料作物学报, 2008, 30(1): 132-136]
[10]  Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 1995, 59: 143-169
[11]  Schabereiter-Gurtner C, Saiz-Jimenez C, Pi?ar G, et al. Altamira cave Paleolithic paintings harbor partly unknown bacterial communities. FEMS Microbiology Letters, 2002, 211: 7-11
[12]  Geng Yuhui, Wu Jinggui, Li Wanhui, et al. Advance of crop residues fertilize the soil. Journal of Jilin Agricultural University, 2000, 22(2): 76-79, 85 (in Chinese) [耿玉辉, 吴景贵, 李万辉, 等. 作物残体培肥土壤的研究进展. 吉林农业大学学报, 2000, 22(2): 76-79, 85]
[13]  Sogin M L, Morrison H G, Huber J A, et al. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 12115-12120
[14]  Theron J, Cloete T E. Molecular techniques for determining microbial diversity and community structure in natural environments. Critical Reviews in Microbiology, 2000, 26: 37-57
[15]  Wang Caixia, Zhang Qingming, Li Jiahang, et al. Identification of the antagonistic bacteria BJ1 and its antifungal activity against Valsa ceratosperma. Journal of Plant Protection, 2012, 39(5): 431-437 (in Chinese) [王彩霞, 张清明, 李桂舫, 等. 苹果树腐烂病拮抗细菌菌株BJ1的鉴定及其抑菌作用. 植物保护学报, 2012, 39(5): 431-437]
[16]  Cole J R, Chai B, Marsh T L, et al. The Ribosomal Database Project (RPD-Ⅱ): previewing a new autoaliger that allows regular update and the new prokaryotic taxonomy. Nucleic Acids Research, 2003, 31: 442-443
[17]  Suzuki M T, Rappe M S, Haimberger Z W, et al. Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Applied and Environmental Microbiology, 1997, 63: 983-989
[18]  Chen Meng. Discussion on the theroy of ecosystem and biodiversity. Journal of Nanjing Forestry University(Natural Sciences ), 2003, 27(5): 1370-1374 (in Chinese) [陈梦. 对生态系统及生物多样性等理论问题的探讨. 南京林业大学学报(自然科学版), 2003, 27(5): 1370-1374]
[19]  Singleton D R, Furlong M A, Rathbun S L, et al. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Applied and Environmental Microbiology, 2001, 67: 4374-4376
[20]  Harch B D, Correll R L, Meech W, et al. Using the Gini coe-fficient with BIOLOG substrate utilisation data to provide an alternative quantitative measure for comparing bacterial soil communities. Journal of Microbiological Methods, 1997, 30: 91-101
[21]  Staddon W J, Duchesne L C, Trevors J T. Microbial diversity and community structure of postdisturbance forest soils as determined by sole-carbon-source utilization patterns. Microbial Ecology, 1997, 34: 125-130
[22]  Ravenschlag K, Sahm K, Pernthaler J, et al. High bacterial diversity in permanently cold marine sediments. Applied and Environmental Microbiology, 1999, 65: 3982-3989
[23]  Liu Xinjing, Xu Yanli, Li Chunjie, et al. Effect of soybean rotation system on the bacterial physiological groups. Soybean Science, 2007, 26(5): 723-727 (in Chinese) [刘新晶, 许艳丽, 李春杰, 等. 大豆轮作系统对土壤细菌生理菌群的影响. 大豆科学, 2007, 26(5): 723-727]
[24]  更多...
[25]  Zak D R, Holmes W E, White D C, et al. Plant diversity, soil microbia1 communities and ecosystem function: are there any links. Ecology, 2003, 84: 2042-2050
[26]  Hiddink G A, Termorshuizen A J, Raaijmakers J M, et al. Effect of mixed and single crops on disease suppressiveness of soils. Phytopathology, 2005, 95: 1325-1332
[27]  Howard R. Cultural control of plant diseases: a historical perspective. Canadian Journal of Plant Pathology, 1996, 18: 145-150
[28]  Schloss P D, Handelsman J. Status of the microbial census. Microbiology and Molecular Biology Reviews, 2004, 68: 686-691
[29]  Yang Guanpin, Nan Lan, Liu Yingjie, et al. Bacterial genetic diversity in soils and their correlation with vegetation. Acta Genetica Sinica, 2000, 27(3): 278-282 (in Chinese) [杨官品, 男兰, 贾海波, 等. 土壤细菌遗传多样性及其与植被类型相关性研究. 遗传学报, 2000, 27(3): 278-282]
[30]  Zhou J Z, Davey M E, Figueras J B, et al. Phylogenetic diversity of a bacteria community determined from Siberian tundra soil DNA. Microbiology, 1997, 143: 3913-3919
[31]  Zhou J Z, Xia B C, Huang H S, et al. Bacterial phylogenetic diversity and a novel candidate division of two humid region, sandy surface soils. Soil Biology and Biochemistry, 2003, 35: 915-924
[32]  Marschner P, Kandeler E, Marschner B. Structure and function of the soil microbial community in along-term fertilizer experiment. Soil Biology and Biochemistry, 2003, 35: 453-467
[33]  Wintzingerode F V, G?bel U B, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews, 1997, 21: 213-229

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133