全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

香蕉中内源条斑病毒的基因型及其激活

, PP. 461-467

Keywords: 条斑病毒,内源条斑病毒,表达,激活

Full-Text   Cite this paper   Add to My Lib

Abstract:

为明确香蕉中不同基因型内源条斑病毒(endogenousBananastreakvirus,eBSV)的激活及其机制,根据eBSOLV-GD(endogenousBananastreakOLvirusGuangdong)的结构设计引物,采用内源条斑病毒基因型分析方法及RT-PCR检测法对其基因型、表达和激活进行了研究。结果表明,只含A基因组的香蕉不含eBSOLV-GD;含B基因组的香蕉均含eBSOLV-GD。在所检测的含B基因组的香蕉中eBSOLV-GD可分为6种基因型,部分为感染型的eBSOLV-GD。粉蕉和大蕉中eBSOLV-GD的片段Ⅱ和Ⅲ能表达,eBSOLV-GD经组织培养后可激活产生BSOLV-GD,引起香蕉发病,发病率为8.6%~18.0%,表明发病率的高低与香蕉的基因型有关,与eBSV基因型无关。

References

[1]  Iskra-Caruana M L, Duroy P O, Chabannes M, et al. The common evolutionary history of badnaviruses and banana. Infection, Genetics and Evolution, 2014, 21: 83-89
[2]  Baranwal V K, Sharma S K, Khurana D, et al. Sequence analysis of shorter than genome length episomal Banana streak OL virus like sequences isolated from banana in India. Virus Genes, 2014, 48(1): 120-127
[3]  Gayral P, Blondin L, Guidolin O, et al. Evolution of endogenous sequences of Banana streak virus: what can we learn from banana (Musa sp.) evolution? Journal of Virology, 2010, 84(14): 7346-7359
[4]  Chabannes M, Baurens F C, Duroy P O, et al. Three infectious viral species lying in wait in the banana genome. Journal of Virology, 2013, 87(15): 8624-8637
[5]  C?te F X, Galzi S, Folliot M, et al. Micropropagation by tissue culture triggers differential expression of infectious endogenous Banana streak virus sequences (eBSV) present in the B genome of natural and synthetic interspecific banana plantains. Molecular Plant Pathology, 2010, 11(1): 137-144
[6]  Dallot S, Acu?a P, Rivera C, et al. Evidence that the proliferation stage of micropropagation procedure is determinant in the expression of Banana streak virus integrated into the genome of the FHIA 21 hybrid (Musa AAAB). Archives of Virology, 2001, 146(11): 2179-2190
[7]  Ndowora T, Dahal G, LaFleur D, et al. Evidence that Badnavirus infection in Musa can originate from integrated pararetroviral sequences. Virology, 1999, 255(2): 214-220
[8]  Squires J, Gillespie T, Schoelz J E, et al. Excision and episomal replication of Cauliflower mosaic virus integrated into a plant genome. Plant Physiology, 2011, 155(4): 1908-1919
[9]  Noreen F, Akbergenov R, Hohn T, et al. Distinct expression of endogenous Petunia vein clearing virus and the DNA transposon dTph1 in two Petunia hybrida lines is correlated with differences in histone modification and siRNA production. Plant Journal, 2007, 50(2): 219-229
[10]  Richert-P?ggeler K R, Noreen F, Schwarzacher T, et al. Induction of infectious Petunia vein clearing (pararetro) virus from endogenous provirus in petunia. The EMBO Journal, 2003, 22(18): 4836-4845
[11]  Le Provost G, Iskra-Caruana M L, Acina I, et al. Improved detection of episomal Banana streak viruses by multiplex immunocapture PCR. Journal of Virological Methods, 2006, 137(1): 7-13
[12]  Harper G, Osuji J O, Heslop-Harrison J S, et al. Integration of banana streak badnavirus into the Musa genome: molecular and cytogenetic evidence. Virology, 1999, 255(2): 207-213
[13]  Michiels A, van den Ende W, Tucker M, et al. Extraction of high-quality genomic DNA from latex-containing plants. Analytical Biochemistry, 2003, 315(1): 85-89
[14]  Staginnus C, Gregor W, Mette M F, et al. Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species. BMC Plant Biology, 2007, 7: 24#
[15]  Geering A D, Olszewski N E, Dahal G, et al. Analysis of the distribution and structure of integrated Banana streak virus DNA in a range of Musa cultivars. Molecular Plant Pathology, 2001, 2(4): 207-213
[16]  更多...
[17]  D\'Hont A, Denoeud F, Aury J M, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 2012, 488(7410): 213-217
[18]  Fan Wubo, Wi Duoqing, Wang Jianhua, et al. Advances on the study of banana streak virus and its resultant disease. Chinese Journal of Tropical Agriculture, 2007, 27(5): 58-63 (in Chinese) [范武波, 吴多清, 王健华, 等. 香蕉条斑病毒及其所致病害研究进展. 热带农业科学, 2007, 27(5): 58-63]
[19]  Safár J, Noa-Carrazana J C, Vrána J, et al. Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana) genome. Genome, 2004, 47(6): 1182-1191
[20]  Lu Q F, Hu H Q, Mo J J, et al. Enhanced amplification of bacterial and fungal DNA using a new type of DNA polymerase. Australasian Plant Pathology, 2012, 41(6): 661-663
[21]  Hu Hanqiao, Li Xinshen, Liang Jiaxian, et al. Detection of BSV and BBTV in different genotypic banana shoots by PCR. Journal of Plant Protection, 2010, 37(1): 95-96 (in Chinese) [胡汉桥, 李信申, 梁甲贤, 等. 不同基因型香蕉分化芽BSV和BBTV带毒率的PCR检测. 植物保护学报, 2010, 37(1): 95-96]
[22]  Rao Xueqin, Zhang Shuguang, Gao Qiaowan. Detecting viruses in banana differentiated shoots from tissue culture. Journal of South China Agricultural University, 2005, 26(1): 64-66 (in Chinese) [饶雪琴, 张曙光, 高乔婉. 工厂化组培香蕉分化芽中病毒的检测. 华南农业大学学报, 2005, 26(1): 64-66]
[23]  White K A, Morris T J. Recombination between defective tombusvirus RNAs generates functional hybrid genomes. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(9): 3642-3646
[24]  Kovalchuk I, Kovalchuk O, Kalck V, et al. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature, 2003, 423(6941): 760-762

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133