全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物受病原物诱导启动子概述

, PP. 142-150

Keywords: 病原物诱导启动子,顺式调控元件,植物抗病性

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物受病原物诱导启动子是一类能对病原物的侵染作出响应的启动子,其活性主要局限于被侵染之时及被侵染的位点。植物受病原物诱导启动子的这一特性赋予其在抗病基因工程中潜在的应用价值。相比植物庞大的启动子组,已发现的植物受病原物诱导启动子仍是少数,关于其作用机制的研究仍有待加强和深入,而其调控的基因与植物抗病性关系还需要引起足够的重视。作者在对植物受病原物诱导启动子进行归类的基础上,重点关注了病原物诱导启动子调控基因的编码产物与植物抗病性的关系,对植物受病原物诱导启动子的顺式调控元件作了简要分析,并对该领域的发展动向进行了讨论。

References

[1]  Czarnecka E, Verner F L, Gurley W B. A strategy for building an amplified transcriptional switch to detect bacterial contamination of plants. Plant Molecular Biology, 2012, 78(1/2): 59-75
[2]  Evrard A, Meynard D, Guiderdoni E, et al. The promoter of the wheat puroindoline-a gene (PinA) exhibits a more complex pattern of activity than that of the PinB gene and is induced by wounding and pathogen attack in rice. Planta, 2007, 225(2): 287-300
[3]  Hayes M A, Feechan A, Dry I B. Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection. Plant Physiology, 2010, 153(1): 211-221
[4]  Xu W, Yu Y, Ding J, et al. Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta, 2010, 231(2): 475-487
[5]  Niyogi K K, Fink G R. Two anthranilate synthase genes in Arabidopsis: defense-related regulation of the tryptophan pathway. Plant Cell, 1992, 4(6): 721-733
[6]  Du L, Chen Z. Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant Journal, 2000, 24(6): 837-847
[7]  Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4): 1663-1668
[8]  Gu K, Yang B, Tian D, et al. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice. Nature, 2005, 435(7045): 1122-1125
[9]  Belbahri L, Boucher C, Candresse T, et al. A local accumulation of the Ralstonia solanacearum PopA protein in transgenic tobacco renders a compatible plant-pathogen interaction incompatible. Plant Journal, 2001, 28(4): 419-430
[10]  Peng J L, Bao Z L, Li P, et al. HarpinXoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis. Acta Botanica Sinica, 2004, 46(9): 1083-1090
[11]  Park H C, Kim M L, Kang Y H, et al. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiology, 2004, 135(4): 2150-2161
[12]  Zheng S X, Xiao S, Chye M L. The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation. Journal of Experimental Botany, 2012, 63(8): 2985-3000
[13]  van der Eycken W, de Almeida Engler J, Inze D, et al. A molecular study of root-knot nematode-induced feeding sites. Plant Journal, 1996, 9(1): 45-54
[14]  Wieczorek K, Golecki B, Gerdes L, et al. Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana. Plant Journal, 2006, 48(1): 98-112
[15]  Barcala M, Garcia A, Cubas P, et al. Distinct heat-shock element arrangements that mediate the heat shock, but not the late-embryogenesis induction of small heat-shock proteins, correlate with promoter activation in root-knot nematode feeding cells. Plant Molecular Biology, 2008, 66(1/2): 151-164
[16]  Wang X H, Replogle A, Davis E L, et al. The tobacco Cel7 gene promoter is auxin-responsive and locally induced in nematode feeding sites of heterologous plants. Molecular Plant Pathology, 2007, 8(4): 423-436
[17]  Li H Y, Yang G D, Shu H R, et al. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the classⅢ chitinase gene VCH3. Plant and Cell Physiology, 2006, 47(1): 154-163
[18]  Siddique S, Wieczorek K, Szakasits D, et al. The promoter of a plant defensin gene directs specific expression in nematode-induced syncytia in Arabidopsis roots. Plant Physiology and Biochemistry, 2011, 49(10): 1100-1107
[19]  Opperman C H, Taylor C G, Conkling M A. Root-knot nematode-directed expression of a plant root-specific gene. Science, 1994, 263(5144): 221-223
[20]  Escobar C, Barcala M, Portillo M, et al. Induction of the Hahsp17.7G4 promoter by root-knot nematodes: involvement of heat-shock elements in promoter activity in giant cells. Molecular Plant-Microbe Interactions, 2003, 16(12): 1062-1068
[21]  Hewezi T, Howe P J, Maier T R, et al. Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. Plant Physiology, 2010, 152(2): 968-984
[22]  Jeong S, Trotochaud A E, Clark S E. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell, 1999, 11(10): 1925-1934
[23]  Hammes U Z, Nielsen E, Honaas L A, et al. AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis. Plant Journal, 2006, 48(3): 414-426
[24]  Replogle A, Wang J, Bleckmann A, et al. Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. Plant Journal, 2011, 65(3): 430-440
[25]  van Poucke K, Karimi M, Gheysen G. Analysis of nematode-responsive promoters in sugar beet hairy roots. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, 2001, 66(2b): 591-598
[26]  Chakrabarti M, Bowen S W, Coleman N P, et al. CYP82E4-mediated nicotine to nornicotine conversion in tobacco is regulated by a senescence-specific signaling pathway. Plant Molecular Biology, 2008, 66(4): 415-427
[27]  Aranda M A, Escaler M, Wang D W, et al. Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(26): 15289-15293
[28]  Fridborg I, Williams A, Yang A, et al. Enhancer trapping identifies TRI, an Arabidopsis gene up-regulated by pathogen infection. Molecular Plant-Microbe Interactions, 2004, 17(10): 1086-1094
[29]  van Verk M C, Gatz C, Linthorst H J M. Transcriptional regulation of plant defense responses. Advances in Botanical Research, 2009, 51: 397-438
[30]  Rushton P J, Somssich I E. Transcriptional control of plant genes responsive to pathogens. Current Opinion in Plant Biology, 1998, 1(4): 311-315
[31]  Singh K B, Foley R C, O?ate-Sánchez L. Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 2002, 5(5): 430-436
[32]  Zan Xinli, Gao Ying, Chen Yuling, et al. Pathogen-responsive cis-acting elements and their interactive transcription factors. Chinese Bulletin of Botany 2013, 48 (2): 219?229 (in Chinese) [昝新丽, 高英, 陈玉玲, 等. 病原菌诱导型启动子顺式作用元件及其互作的转录因子. 植物学报, 2013, 48(2): 219-229]
[33]  Brown R L, Kazan K, McGrath K C, et al. A role for the GCC-Box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiology, 2003, 132(2): 1020-1032
[34]  Pontier D, Balague C, Bezombes-Marion I, et al. Identification of a novel pathogen-responsive element in the promoter of the tobacco gene HSR203J, a molecular marker of the hypersensitive response. Plant Journal, 2001, 26(5): 495-507
[35]  Gurr S J, Rushton P J. Engineering plants with increased disease resistance: how are we going to express it? Trends in Biotechnology, 2005, 23(6): 283-290
[36]  Chen Huamin, Pan Junsong, Zhao Xiuxiang, et al. A non-host resistance mutant of Arabidopsis of screening method based on gene report system. Chinese Science Bulletin, 2008, 53(4): 426-432 (in Chinese) [陈华民, 潘俊松, 赵秀香, 等. 一种基于报告基因体系的拟南芥非寄主抗性突变体的筛选方法. 科学通报, 2008, 53(4): 426-432]
[37]  Kong Weiwen, Wang Dandan, Liu Aixin. Characteristics of gene expression driven by two tandem pathogen-inducible promoters. Acta Phytopathologica Sinica,2013,43(4) : 376-382 (in Chinese) [孔维文, 王丹丹, 刘爱新. 串联双病原物诱导启动子驱动基因表达的特性. 植物病理学报, 2013, 43(4): 376-382]
[38]  Samac D A, Shah D M. Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter. Plant Cell, 1991, 3(10): 1063-1072
[39]  Liu Guosheng, Liu Yule, Li Shengguo, et al. Transgenic tobacco plants with pathogenic bacterium avirulence gene avrD express resistance to alternaria alternata. Acta Phytopathologica Sinica, 1996, 26(2): 165-170 (in Chinese) [刘国胜, 刘玉乐, 李胜国, 等. 病原细菌无毒基因avrD介导的抗赤星病转基因烟草. 植物病理学报, 1996, 26(2): 165-170]
[40]  Keller H, Pamboukdjian N, Ponchet M, et al. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell, 1999, 11(2): 223-235
[41]  Choi J J H, Klosterman S J, Hadwiger L A. A promoter from pea gene DRR206 is suitable to regulate an elicitor-coding gene and develop disease resistance. Phytopathology, 2004, 94(6): 651-660
[42]  Yevtushenko D P, Sidorov V A, Romero R, et al. Wound-inducible promoter from poplar is responsive to fungal infection in transgenic potato. Plant Science, 2004, 167(4): 715-724
[43]  Sasaki K, Yuichi O, Hiraga S, et al. Characterization of two rice peroxidase promoters that respond to blast fungus-infection. Molecular Genetics and Genomics, 2007, 278(6): 709-722
[44]  Dron M, Clouse S D, Dixon R A, et al. Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(18): 6738-6742
[45]  Lois R, Dietrich A, Hahlbrock K, et al. A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO Journal, 1989, 8(6): 1641-1648
[46]  L?cht U, van de Meier I, Hahlbrock K, et al. A 125 bp promoter fragment is sufficient for strong elicitor-mediated gene activation in parsley. EMBO Journal, 1990, 9(9): 2945-2950
[47]  Martini N, Egen M, Rüntz I, et al. Promoter sequences of a potato pathogenesis-related gene mediate transcriptional activation selectively upon fungal infection. Molecular and General Genetics, 1993, 236(2/3): 179-186
[48]  Malnoy M, Reynoird J P, Borejsza-Wysocka E E, et al. Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus×domestica). Transgenic Research, 2006, 15(1): 83-93
[49]  Oommen A, Dixon R A, Paiva N L. The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants. Plant Cell, 1994, 6(12): 1789-1803
[50]  Gough C, Hemon P, Tronchet M, et al. Developmental and pathogen-induced activation of an msr gene, str246C, from tobacco involves multiple regulatory elements. Molecular and General Genetics, 1995, 247(3): 323-337
[51]  Yin S, L M, Newman J, et al. Regulation of sesquiterpene cyclase gene expression. Characterization of an elicitor-and pathogen-inducible promoter. Plant Physiology, 1997, 115(2): 437-451
[52]  Manners J M, Penninckx I A M A, Vermaere K, et al. The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Molecular Biology, 1998, 38(6): 1071-1080
[53]  Wang Dandan, Wang Rong, Tang Lili, et al. Construct of plant safety expression vector harboring two pathogen inducible promoters. Acta Phytopathologica Sinica, 2009, 39(2) : 153-159 (in Chinese) [王丹丹, 王荣, 唐丽丽, 等. 含双病原物诱导启动子植物安全表达载体的构建. 植物病理学报, 2009, 39(2): 153-159]
[54]  更多...
[55]  Coutos-Thevenot P, Poinssot B, Bonomelli A, et al. In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter. Journal of Experimental Botany, 2001, 52(358): 901-910
[56]  Heise A, Lippok B, Kirsch C, et al. Two immediate-early pathogen-responsive members of the AtCMPG gene family in Arabidopsis thaliana and the W-box-containing elicitor-response element of AtCMPG1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(13): 9049-9054
[57]  Liu J J, Ekramoddoullah A K M, Piggott N, et al. Molecular cloning of a pathogen/wound-inducible PR10 promoter from Pinus monticola and characterization in transgenic Arabidopsis plants. Planta, 2005, 221(2): 159-169
[58]  Yamamizo C, Kuchimura K, Kobayashi A, et al. Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiology, 2006, 140(2): 681-692
[59]  Lv Huafei, Ming Xiaotian, Qu Lijia, et al. Construction and expression of inducible promoter of rice blast. Chinese Science Bulletin, 1999, 44(20): 2144-2149 (in Chinese) [吕华飞, 明小天, 瞿礼嘉, 等. 稻瘟病病原物诱导启动子的构建及表达. 科学通报, 1999, 44(20): 2144-2149]
[60]  Wu Tian, Xie Conghua. Cloning and activity analysis of the promoter of potato protein kinase gene StPK1 . Scientia Agricultura Sinica, 2011, 44(5): 867-873 (in Chinese) [吴田, 谢从华. 马铃薯蛋白激酶基因StPK1启动子的克隆及活性分析. 中国农业科学, 2011, 44(5): 867-873]
[61]  Wildermuth M C, Dewdney J, Wu G, et al. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 2001, 414(6863): 562-565
[62]  Igawa T, Ochiai-Fukuda T, Takahashi-Ando N, et al. New TAXI-type xylanase inhibitor genes are inducible by pathogens and wounding in hexaploid wheat. Plant and Cell Physiology, 2004, 45(10): 1347-1360
[63]  Zhang J, Peng Y, Guo Z J. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Research, 2008, 18(4): 508-521
[64]  Meng Y, Moscou M J, Wise R P. Blufensin1 negatively impacts basal defense in response to barley powdery mildew. Plant Physiology, 2009, 149(1): 271-285
[65]  Wiese W, Vornam B, Krause E, et al. Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine DNA fragment. Plant Molecular Biology, 1994, 26(2): 667-677
[66]  Castresana C, de Carvalho F, Gheysen G, et al. Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia beta-1, 3-glucanase gene. Plant Cell, 1990, 2(12): 1131-1143
[67]  Sohn K H, Lee S C, Jung H W, et al. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Molecular Biology, 2006, 61(6): 897-915
[68]  Hong J, Choi D, Kim S, et al. Distinct roles of the pepper pathogen-induced membrane protein gene CaPIMP1 in bacterial disease resistance and oomycete disease susceptibility. Planta, 2008, 228(3): 485-497
[69]  Hong J K, Hwang B K. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants. Planta, 2009, 229(2): 249-259
[70]  Siddique S, Sobczak M, Tenhaken R, et al. Cell wall ingrowths in nematode induced syncytia require UGD2 and UGD3. PloS ONE, 2012, 7(7): e41515
[71]  Hutangura P, Mathesius U, Jones M G K, et al. Auxin induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway. Australian Journal of Plant Physiology, 1999, 26(3): 221-231
[72]  Karczmarek A, Overmars H, Helder J, et al. Feeding cell development by cyst and root-knot nematodes involves a similar early, local and transient activation of a specific auxin-inducible promoter element. Molecular Plant Pathology, 2004, 5(4): 343-346
[73]  Lohar D P, Schaff J E, Laskey J G, et al. Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses. Plant Journal, 2004, 38(2): 203-214
[74]  Barthels N, van der Lee F M, Klap J, et al. Regulatory sequences of Arabidopsis drive reporter gene expression in nematode feeding structures. Plant Cell, 1997, 9(12): 2119-2134
[75]  Vercauteren I, van der Schueren E, van Montagu M, et al. Arabidopsis thaliana genes expressed in the early compatible interaction with root-knot nematodes. Molecular Plant-Microbe Interactions, 2001, 14(3): 288-299
[76]  Barcala M, Garcia A, Cabrera J, et al. Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant Journal, 2010, 61(4): 698-712
[77]  Mazarei M, Lennon K A, Puthoff D P, et al. Homologous soybean and Arabidopsis genes share responsiveness to cyst nematode infection. Molecular Plant Pathology, 2004, 5(5): 409-423
[78]  Niebel A, de Engler J A, Hemerly A, et al. Induction of cdc2a and cyc1At expression in Arabidopsis thaliana during early phases of nematode-induced feeding cell formation. Plant Journal, 1996, 10(6): 1037-1043
[79]  Strittmatter G, Gheysen G, Gianinazzi-Pearson V, et al. Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gst1 gene. Molecular Plant-Microbe Interactions, 1996, 9(1): 68-73
[80]  Escobar C, de Meutter J, Aristizabal F A, et al. Isolation of the LEMMI9 gene and promoter analysis during a compatible plant-nematode interaction. Molecular Plant-Microbe Interactions, 1999, 12(5): 440-449
[81]  Juergensen K, Scholz-Starke J, Sauer N, et al. The companion cell-specific Arabidopsis disaccharide carrier AtSUC2 is expressed in nematode-induced syncytia. Plant Physiology, 2003, 131(1): 61-69
[82]  Coca M A, Almoguera C, Thomas T L, et al. Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter. Plant Molecular Biology, 1996, 31(4): 863-876
[83]  Strompen G, Gruner R, Pfitzner U M. An as-1-like motif controls the level of expression of the gene for the pathogenesis-related protein 1a from tobacco. Plant Molecular Biology, 1998, 37(5): 871-883
[84]  Shin R, An J M, Park C J, et al. Capsicum annuum tobacco mosaic virus-induced clone 1 expression perturbation alters the plant\\'s response to ethylene and interferes with the redox homeostasis. Plant Physiology, 2004, 135(1): 561-573
[85]  Sa Q, Wang Y, Li W, et al. The promoter of an antifungal protein gene from Gastrodia elata confers tissue-specific and fungus-inducible expression patterns and responds to both salicylic acid and jasmonic acid. Plant Cell Reports, 2003, 22(1): 79-84

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133