Awan D A, Saleem M A, Nadeem M S, et al. Toxicological and biochemical studies on spinosad and synergism with piperonyl butoxide in susceptible and resistant strains of Tribolium castaneum. Pakistan Journal of Zoology, 2012, 44(3): 649-692
Ouyang Y, Montez G H, Liu L, et al. Spirodiclofen and spirotetramat bioassays for monitoring resistance in citrus red mite, Panonychus citri (Acari: Tetranychidae). Pest Management Science, 2012, 68(5): 781-787
Chen Z Y, Ran C, Zhang L, et al. Susceptibility and esterase activity in citrus red mite Panonychus citri (McGregor) (Acari: Tetranychidae) after selection with phoxim. International Journal of Acarology, 2009, 35(1): 33-40
[8]
Niu J Z, Dou W, Wang B J, et al. Purification and partial characterization of glutathione S-transferases from three field populations of Panonychus citri (Acari: Tetranychidae). Experimental and Applied Acarology, 2012, 56(2): 99-111
[9]
Van Leeuwen T, Van Nieuwenhuyse P, Vanholme B, et al. Parallel evolution of cytochrome b mediated bifenazate resistance in the citrus red mite Panonychus citri. Insect Molecular Biology, 2011, 20(1): 135-140
[10]
Yuan M L, Wei D D, Wang B J, et al. The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs. BMC Genomics, 2010, 11: 597
[11]
Niu J Z, Dou W, Ding T B, et al. Transcriptome analysis of the citrus red mite, Panonychus citri, and its gene expression by exposure to insecticide/acaricide. Insect Molecular Biology, 2012, 21(4): 422-436
[12]
Li X C, Schuler M A, Berenbaum M R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 2007, 52: 231-253
[13]
Mohan M, Gujar G T. Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop Protection, 2003, 22(3): 495-504
[14]
Yang X M, Margolies D C, Zhu K Y, et al. Host plant-induced changes in detoxification enzymes and susceptibility to pesticides in the twospotted spider mite (Acari: Tetranychidae). Journal of Economic Entomology, 2001, 94(2): 381-387
[15]
Liu B, Jiang G F, Zhang Y F, et al. Analysis of transcriptome differences between resistant and susceptible strains of the citrus red mite Panonychus citri (Acari: Tetranychidae). PLoS ONE, 2011, 6(12): e28516
[16]
Li R Q, Yu C, Li Y R, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 2009, 25(15): 1966-1967
[17]
Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628
[18]
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and 2-△△CT method. Methods, 2001, 25: 402-408
[19]
Niu J Z, Dou W, Ding T B, et al. Evalu?????映?牦??灵???????潲?敦?????????湮???????捱牵??????????愠?????????????漠?祥捶桥?獯?捭???椠???????景??捣愠??????渠????? ̄?????据??????????どㄠ?????????????㈩??????????????????????娩??????????????????????汰??却?猬挠????戬椠?椹琨???渠??????瘸椴?礼?潲显???甸?愠?桡楮????午??????晤?牡?獯????渠????敬??椠??搠??漠??氮愠???????景??????????捧桥?????瑭物????椠?????物???呤?瑷物???捩????整?????????摩???湮???搠????据???漠?椰????氲?爸?搠???渭??洱??潲??????㈠ぇ???????????????uwen T, Clark R M, et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 2011, 476: 487-492
[20]
Devonshire A L. The properties of a carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz.), and its role in conferring insecticide resistance. Biochemical Journal, 1977, 167: 675-683
He Y P, Zhang J F, Chen J M, et al. Using synergists to detect multiple insecticide resistance in field populations of rice stem borer. Pesticide Biochemistry and Physiology, 2012, 103(2): 121-126
David J P, Strode C, Vontas J, et al. The Anopheles gambiae detoxification chip: A highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(11): 4080-4084
[26]
Raymond M, Chevillon C, Guillemaud T, et al. An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1998, 353: 1707-1711