Yahyaoui A H, Reinhold M, Scharen A L. Virulence spectrum in populations of the barley powdery mildew pathogen Erysiphe graminis f.sp.hordei in Tunisia and Morocco in 1992. Plant Pathology, 1997, 46: 139-146
[2]
Czembor J H. Resistance to powdery mildew in populations of barley landraces from Morocco. Genetic Resources and Crop Evolution, 2000, 47: 439-449
[3]
Spanu P D, Abbott J C, Amselem J, et al. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science, 2010, 330: 1543-1546
[4]
Schweizer P, Stein N. Large-scale data integration reveals colocalization of gene functional groups with meta-QTL for multiple disease resistance in barley. Molecular Plant-Microbe Interactions, 2011, 24: 1492-1501
[5]
Dean R, van Kan J A L, Pretorius Z A, et al. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13(4): 414-430
[6]
Liu Shuyan, Gao Song. Discuss about Erysiphe level classification system.Mycosystema, 2006, 25(1): 152-159 (in Chinese) [刘淑艳, 高松. 白粉菌属级分类系统的讨论. 菌物学报, 2006, 25(1): 152-159]
[7]
Ridout C J. Profiles in pathogenesis and mutualism: powdery mildews.//Deising H. Plant relationships (2nd ed.). Berlin Heidelberg: Springer-Verlag, 2009: 51-68
[8]
Zhang Zhongyi, Leng Huaiqiong, Zhang Zhiming, et al. Plant pathogenic mycology. Chengdu: Sichuan Science and Technology Press, 1988 (in Chinese) [张中一, 冷怀琼, 张志铭, 等. 植物病原真菌学. 成都: 四川科学技术出版社, 1988]
[9]
Wolfe M S, McDermott J M. Population genetics of plant pathogen interactions: the example of the Erysiphe graminis-Hordeum vulgare pathosystem. Annual Review of Phytopathology, 1994, 32: 89-113
[10]
Caffier V, Hoffstadt T, Leconte M, et al. Seasonal changes in pathotype complexity in French populations of barley powdery mildew. Plant Pathology, 1996, 45: 454-468
[11]
Gotz M, Friedrich S, Boyle C. Development of cleistothecia and early ascospore release of Erysiphe graminis DC.f.sp.tritici in winter wheat in relation to host age and climatic conditions. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 1996, 103(2): 134-141
[12]
Brown J K M, Wolfe M S. Structure and evolution of a population of Erysiphe graminis f.sp.hordei. Plant Pathology, 1990, 39: 376-390
[13]
Cherewick W J. Studies on the biology of Erysiphe graminis DC. Canadian Journal of Research, 1944, 22: 52-86
[14]
Chen Houde, Wang Zhangming, Li Qingha, et al. Biological characteristics of barley powdery mildew asexual stage. Barley Science, 1987, (4): 30-37 (in Chinese) [陈厚德, 王彰明, 李清哈, 等. 大麦白粉菌无性阶段生物学特性研究. 大麦科学, 1987, (4): 30-37]
[15]
Wang Jinsheng. Molecular Plant Pathology. Beijing: China Agricultural Press, 1999 (in Chinese) [王金生. 分子植物病理学. 北京: 中国农业出版社, 1999]
[16]
Jensen H R, Dreiseitl A, Sadiki M, et al. High diversity, low spatial structure and rapid pathotype evolution in Moroccan populations of Blumeria graminisf.sp.hordei. European Journal of Plant Pathology, 2013, 136: 323-336
[17]
Dreiseitl A, Pickering R A. Pathogenicity of Blumeria graminis f.sp.hordei in New Zealand in 1997. Journal of Crop & Horticultural Science, 1999, 27(4): 273-280
[18]
Dreiseitl A, Dinoor A, Kosman E. Virulence and diversity of Blumeria graminis f.sp.hordei in Israel and the Czech Republic. Plant Disease, 2006, 90(8): 1031-1038
[19]
Flor H H. Host-parasite interaction in flax rust: its genetic and other implications. Phytopatholgy, 1955, 45: 680-685
[20]
Wolfe M S, Barrett J A. Phenotype-phenotype analysis: field application of the gene-for-gene hypothesis in host-pathogen relation. Annals of Applied Biology, 1976, 82: 369-374
[21]
更多...
[22]
Andrivon D, Limpert E. Origin and proportions of the components of composite populations of Erysiphe graminis f.sp.hordei. Journal of Phytopathology, 1992, 135: 6-9
[23]
Wolfe M S, Schwarzbach E. The use of virulence analysis in cereal mildews. Phytopathologische Zeitschrift, 1975, 82: 297-307
[24]
Thompson J N, Burdon J J. Gene-for-gene coevolution between plants and parasites. Nature, 1992, 360: 121-125
[25]
Wolfe M S, Knott D R. Populations of plant pathogens: some constraints on analysis of variation in pathogenicity. Plant Pathology, 1982, 31: 79-90
[26]
Moseman J G. Physiological races of Erysiphe graminis f.sp.hordei in North America. Pytopathology, 1957, 46: 318-322
[27]
Moseman J G. Isogenic barley lines for reaction to Erysiphe graminis f.sp.hordei. Crop Sciences, 1972, 12: 681-682
[28]
Kolster P, Munk L, Stolen O, et al. Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Science, 1986, 26: 903-907
[29]
Zhu Jinghuan, Yang Jianming, Wang Junmei, et al. Identification of pathotypes of Blumeria graminis f. sp. hordei in southeast China. Acta Agriculturae Zhejiangensis, 2007, 19(1): 29-33 (in Chinese) [朱靖环, 杨建明, 汪军妹, 等. 大麦白粉病菌致病型鉴定初报. 浙江农业学报, 2007, 19(1): 29-33]
[30]
Zhu J H, Wang J M, Jia Q J, et al. Pathotypes and genetic diversity of Blumeria graminis f.sp.hordei in the winter barley regions in China. Agricultural Sciences in China, 2010, 9 (12): 1787-1798
[31]
Dreiseitl A, Kosman E. Virulence phenotypes of Blumeria graminis f.sp.hordei in South Africa. European Journal of Plant Pathology, 2013, 136: 113-121
[32]
Andrivon D, Vallavieille-Pope D C. Racial diversity and complexity in regional populations of Erysiphe graminis f.sp.hordei in France over a 5-year period. Plant Pathology, 1993, 42: 443-464
[33]
Dreiseitl A. Adaptation of Blumeria graminis f.sp. hordei to barley resistance genes in the Czech Republic in 1971-2000. Plant Soil Environment, 2003, 49(6): 241-248
[34]
Hovmoller M S, Munk L, Ostergard H. Observed and predicted changes in virulence gene frequencies at 11 loci in a local barley powdery mildew population. Phytopathology, 1993, 83(3): 253-260
[35]
Bousset L, de Vallavieille-Pope C. Effect of sexual recombination on pathotype frequencies in barley powdery mildew populations of artificially inoculated field plots. European Journal of Plant Pathology, 2003, 109: 13-24
[36]
O\\'Hara R B, Brown J K M. Spatial aggregation of pathotypes of barley powdery mildew. Plant Pathology, 1997, 46: 969-977
[37]
Muller K, McDermott J M, Martin M S, et al. Analysis of diversity of plant pathogens: the barley powdery mildew pathogen across Europe. European Journal of Plant Pathology, 1996, 102: 385-395
[38]
Kolmer J A. Selection in a heterogeneous population of Puccinia recondita f.sp.tritici. Phytopathology, 1993, 83: 909-914
[39]
Dreiseit A. Postulation of genes for resistance to powdery mildew in spring barley cultivars registered in the Czech Republic from 1996 to 2010. Euphytica, 2013, 191: 183-189
[40]
McDonald B A, McDermott J M. Population genetics of plant pathogenic fungi. Bioscience, 1993, 43: 311-319
[41]
Ploetz1 R C, Schnell R J, Ying Z T, et al. Analysis of molecular diversity in Crinipellis perniciosa with AFLP markers. European Journal of Plant Pathology, 2005, 111: 317-326
[42]
Li Yahong, Cao Lihua, Zhou Yilin, et al. Virulence and genetic diversity analyses of wheat powdery mildew population in Henan Province during 2009―2010. Journal of Plant Protection, 2012, 39(1): 31-37 (in Chinese) [李亚红, 曹丽华, 周益林, 等. 2009―2010年河南省小麦白粉菌群体毒性及其遗传多样性分析. 植物保护学报, 2012, 39(1): 31-37]
[43]
de Assis J B, Storari M, Zala M, et al. Genetic structure of populations of the rice-infecting pathogen Rhizoctonia solani AG-1 IA from China. Phytopathology, 2009, 99(9): 1090-1099
[44]
Brown J K M, Jessop A C, Rezanoor H N. Genetic uniformity in barley and its powdery mildew pathogen. Proceedings of the Royal Society of London, Series B, 1991, 246: 83-90
[45]
Brown J K M. Chance and selection in the evolution of barley mildew. Trends in Microbiology, 1994, 2(12): 470-475
[46]
Brown J K M, Le Boulaire S, Evans N. Genetics of responses to morpholine-type fungicides and of avirulences in Erysiphe graminis f.sp.hordei. European Journal of Plant Pathology, 1996, 102: 479-490
[47]
Christiansen S K, Giese H. Genetic analysis of the obligate parasitic barley powdery mildew fungus based on RFLP and virulence loci. Theoretical and Applied Genetics, 1990, 79: 705-712
[48]
Brown J K M. Little else but parasites. Science, 2003, 299: 1680-1681
[49]
Schulze-Lefert P, Panstruga R. Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annual Review of Phytopathology, 2003, 41: 641-667
[50]
Borbye L, Giese H. Genome manipulation in recalcitrant species: construction and characterization of a yeast artificial chromosome (YAC) library from Erysiphe graminis f.sp.hordei, an obligate fungal pathogen of barley. Gene, 1994, 144: 107-111
[51]
Shen Q H, Saijo Y, Mauch S, et al. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science, 2007, 315: 1098-1103
[52]
Maekawa T, Cheng W, Spiridon L N, et al. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host & Microbe, 2011, 17: 9(3): 187-199
[53]
Bai S, Liu J, Chang C. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathogens, 2012, 8(6): 1-16
[54]
Dreiseitl A, Direct selection in the Blumeria graminis f.sp.hordei population in the Czech Republic. Phytopathology, 2000, 35: 317-322
[55]
Chi Wenjuan, Cao Yuanyin, Zhu Guiqing, et al. Analysis on 2004- 2005 racial virulence of Blumeria graminis f. sp. tritici in northern China and the resistance in wheat cultivars in the disease epidemic related zones. Journal of Plant Protection,2007, 34(6): 567-572 (in Chinese) [迟文娟, 曹远银, 朱桂清, 等. 2004―2005年北方部分麦区白粉病菌小种动态及流行相关区品种抗性分析,植物保护学报,2007, 34(6): 567-572]
[56]
Zhu Jinghuan, Wang Junmei, Jia Qiaojun, et al. Investigation on virulence of Blumeria graminis f.sp.hordei population and resistance to powdery mildew of barley varieties. Journal of Plant Protection, 2009, 36(6): 509-516 (in Chinese) [朱靖环, 汪军妹, 贾巧君, 等. 大麦白粉菌种群毒性监测及抗性材料鉴定. 植物保护学报, 2009, 36(6): 509-516]
[57]
Schwarzbach E, Slater S E, Clarkson J D S. Occurrence of partially mlo-virulent isolates of barley powdery mildew in agricultural environments in Europe. Cereal Rusts and Powdery Mildews Bulletin, 2002/0208schwarzbach
[58]
Williams K J. The molecular genetics of disease resistance in barley. Australian Journal of Agricultural Research, 2003, 54: 1065-1079
[59]
Friedt W, Ordon F. Molecular markers for gene pyramiding and disease resistance breeding in barley.//Varshney R V, Tuberosa R. Genomics-assisted crop improvement. Netherlands: Springer, 2007: 81-101
[60]
Ding Y, Wang X, Su L, et al. SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell, 2007, 19(1): 9-22
[61]
La H, Ding B, Mishra G P, et al. A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (37): 15498-15503
[62]
Miura A, Yonebayashi S, Watanabe K, et al. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature, 2001, 411(6834): 212-214
[63]
Zhang X Y. The epigenetic landscape of plants. Science, 2008, 320(5875): 489-492
[64]
Caffier V, Brandle U E, Wolfe M S. Genotypic diversity in barley powdery mildew populations in northern France. Plant Pathology, 1999, 48: 582-587
[65]
Rouxel T, Balesdent M H. Avirulence genes.//Encyclopedia of life sciences. Chichester: John Wiley & Sons Ltd, 2010: 1-13
[66]
Gabriel D W, Rolfe B G. Working models of specific recognition in plant-microbe interactions. Annual Review of Phytopathology, 1990, 28: 365-391
[67]
de Wit P J G M. Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annual Review of Phytopathology, 1992, 30: 391-418
[68]
de Wit P J G M. Pathogen avirulence and plant resistance: a key role for recognition. Trends in Plant Science, 1997, 2(12): 452-458
[69]
Lamb C J. Plant disease resistance genes in signal perception and transduction. Cell, 1994, 76: 419-422
[70]
Tang X Y, Frederick R D, Zhou J M, et al. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science, 1996, 274: 2060-2063
[71]
Leister R T, Katagiri F. A resistance gene product of the nucleotide binding site-leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo. The Plant Journal, 2000, 22(4): 345-354
[72]
Jia Y, McAdams S A, Bryan G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 2000, 19(15): 4004-4014
[73]
Pedersen C, Rasmussen S W, Giese H. A genetic map of Blumeria graminis based on functional genes, avirulence genes, and molecular markers. Fungal Genetics and Biology, 2002, 35: 235-246
[74]
Brown J K M, Jessop A C. Genetics of avirulences in Erysiphe graminis f.sp.hordei. Plant Pathology, 1995, 44: 1039-1049
[75]
Ridout C J, Skamnioti P, Porritt O, et al. Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. The Plant Cell, 2006, 18: 2402-2414
[76]
Skamnioti P, Pedersen C, Al-Chaarani G R, et al. Genetics of avirulence genes in Blumeria graminis f.sp.hordei and physical mapping of AVRa22 and AVRa12. Fungal Genetics and Biology, 2008, 45: 243-252
[77]
Caffier V, de Vallavieille-Pope C, Brown J K M. Segregation of avirulences and genetic basis of infection types in Erysiphe graminis f.sp.hordei. Phytopathology, 1996, 86: 1112-1121
[78]
Brown J K M. Yield penalties of disease resistance in crops. Current Opinion in Plant Biology, 2002, 5: 339-344
[79]
Brown J K M, Simpson C G. Genetic analysis of DNA fingerprints and virulences in Erysiphe graminis f.sp.hordei. Current Genetics, 1994, 26: 172-178
[80]
Jensen J, Jensen H P, Jongensen J H. Linkage studies of barley powdery mildew virulence loci. Hereditas, 1995, 122: 197-209