全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

表达Harpin蛋白质Hpa1功能片段的转基因小麦对赤霉病的抗性

, PP. 25-34

Keywords: harpin蛋白质,Hpa110-42,转基因小麦,赤霉病,病害控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

来自水稻黄单胞菌的harpin蛋白质Hpa1有促进植物生长、诱导植物抗病性的功能,Hpa1序列10~42氨基酸片段(Hpa110-42)的活性比全长分子高1.3~7.5倍。为研究Hpa110-42在转基因小麦体内表达以后对赤霉病的影响和评价转基因小麦抗病水平与应用潜力,对6个小麦转基因系进行了测定。结果显示,Hpa110-42在转基因系T3~T5代呈现稳定表达,用禾谷镰刀菌一个分离物进行接种以后,转基因系发生赤霉病的程度较非转基因小麦显著降低,且转基因系T3~T5代赤霉病降低的趋势一致。另外,转基因系小麦病害减轻的程度,与在非转基因小麦上使用杀菌剂的效果相当,表明Hpa110-42转基因表达对小麦赤霉病有防治作用。

References

[1]  Schroeder H W, Christensen J J. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 1963, 53(1): 831-838
[2]  Pritsch C, Muehlbauer G J, Bushnell W R, et al. Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Molecular Plant-Microbe Interactions, 2000, 13(2): 159-169
[3]  Wanjiru W M, Kang Z, Buchenauer H. Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. European Journal of Plant Pathology, 2002, 108(8): 803-810
[4]  Parry D W, Jenkinson P, McLeod L. Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathology, 1995, 44(2): 207-238
[5]  Brown N A, Urban M, van de Meene A M, et al. The infection biology of Fusarium graminearum: defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biology, 2010, 114(7): 555-571
[6]  Rittenour W R, Harris S D. An in vitro method for the analysis of infection-related morphogenesis in Fusarium graminearum. Molecular Plant Pathology, 2010, 11(3): 361-369
[7]  Walter S, Nicholson P, Doohan F M. Action and reaction of host and pathogen during Fusarium head blight disease. New Phytologist, 2010, 185(1): 54-66
[8]  Kazan K, Gardiner D M, Manners J M. On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Molecular Plant Pathology, 2012, 13(4): 399-413
[9]  Ramirez M L, Chulze S, Magan N. Impact of environmental factors and fungicides on growth and deoxinivalenol production by Fusarium graminearum isolates from Argentinian wheat. Crop Protection, 2004, 23(2): 117-125
[10]  Fung F, Clark R F. Health effects of mycotoxins: a toxicological overview. Journal of Toxicology: Clinical Toxicology, 2004, 42(2): 217-234
[11]  Lindblad M, Gidlund A, Sulyok M, et al. Deoxynivalenol and other selected Fusarium toxins in Swedish wheat -occurrence and correlation to specific Fusarium species. International Journal of Food and Microbiology, 2013, 167(2): 284-291
[12]  Shin S, Mackintosh C A, Lewis J, et al. Transgenic wheat expressing a barley class Ⅱ chitinase gene has enhanced resistance against Fusarium graminearum. Journal of Experimental Botany, 2008, 59(9): 2371-2378
[13]  Li Z, Zhou M, Zhang Z, et al. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Functional & Integrative Genomics, 2011, 11(1): 63-70
[14]  Volpi C, Janni M, Lionetti V, et al. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat. Molecular Plant-Microbe Interactions, 2011, 24(9): 1012-1019
[15]  Moscetti I, Tundo S, Janni M, et al. Constitutive expression of the xylanase inhibitor TAXI-Ⅲ delays Fusarium head blight symptoms in durum wheat transgenic plants. Molecular Plant-Microbe Interactions, 2013, 26(12): 1464-1472
[16]  Karlovsky P. Biological detoxification of the mycotoxin deoxynivalenol and its use in genetically engineered crops and feed additives. Applied Microbiology and Biotechnology, 2011, 91(3): 491-504
[17]  Chen L, Zhang S J, Zhang S S, et al. A fragment of the Xanthomonas oryzae pv.oryzicola harpin HpaGXooc reduces disease and increases yield of rice in extensive grower plantings. Phytopathology, 2008, 98(7): 792-802
[18]  Wei Z M, Lacy R J, Zumoff C H, et al. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science, 1992, 257(5066): 85-88
[19]  Dong H P, Peng J L, Bao Z L, et al. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiology, 2004, 136(3): 3628-3638
[20]  Dong H S, Delaney T P, Bauer D W, et al. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. The Plant Journal, 1999, 20(2): 207-215
[21]  Liu R X, LüB B, Wang X M, et al. Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis. Journal of Biosciences, 2010, 35(3): 435-450
[22]  LüB B, Li X J, Sun W W, et al. AtMYB44 regulates resistance to the green peach aphid and diamondback moth by activating EIN2-affected defenses in Arabidopsis. Plant Biology, 2013, 15(5): 841-850
[23]  Zou B H, Jia Z H, Tian S M, et al. AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis. Functional Plant Biology, 2013, 40(3): 304-313
[24]  Liu R X, Chen L, Jia Z H, et al. Transcription factor AtMYB44 regulates induced expression of the ETHYLENE INSENSITIVE 2 gene in Arabidopsis responding to a harpin protein. Molecular Plant-Microbe Interactions, 2011, 24(3): 377-389
[25]  Wu X J, Wu T Q, Long J Y, et al. Productivity and biochemical properties of green tea in response to full-length and functional fragments of HpaGXooc, a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv.oryzicola. Journal of Biosciences, 2007, 32(6): 1119-1131
[26]  Yang M, Qin B P, Liu C L, et al. The molecular identification of transgenic Hpa110-42 wheat and resistance evaluation on Fusarium head blight. Scientia Agricultura Sinica, 2013, 46(4): 657-667
[27]  Gao L. Agronomic characters of Yangmai #16 and the planting technique for high yield. Anhui Agricultural Science Bulletin, 2011, 17(14): 137, 209
[28]  Chen L, Zhang Z Y, Liang H X, et al. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. Journal of Experimental Botany, 2008, 59(15): 4195-4204
[29]  Privalle L S. Phosphomannose isomerase, a novel plant selection system: potential allergenicity assessment. Annals of the New York Academy of Sciences, 2002, 964(1): 129-138
[30]  O’Kennedy M M, Burger J T, Botha F C. Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Reports, 2004, 22(9): 684-690
[31]  Gao Z, Xie X, Ling Y, et al. Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnology Journal, 2005, 3(6): 591-599
[32]  Shi L W. SPSS19.0 statistical analysis from accidence to conversance. Beijing: Tsinghua University Press, 2012
[33]  Oldach K H, Becker D, L?rz H. Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Molecular Plant-Microbe Interactions, 2011, 14(7): 832-838
[34]  Bieri S, Potrykus I, Futterer J. Effects of combined expression of antifungal barley seed proteins in transgenic wheat on powdery mildew infection. Molecular Breeding, 2003, 11(1): 37-48
[35]  Ferrari S, Sella L, Janni M, et al. Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. Plant Biology, 2012, 14(S1): 31-38
[36]  Buerstmayr H, Ban T, Anderson J A. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding, 2009, 128(1): 1-26
[37]  Buerstmayr M, Alimari A, Steiner B, et al. Genetic mapping of QTL for resistance to Fusarium head blight spread (type 2 resistance) in a Triticum dicoccoides×Triticum durum backcross-derived population. Theoretical and Applied Genetics, 2013, 126(11): 2825-2834
[38]  He X, Skinnes H, Oliver R E, et al. Linkage mapping and identification of QTL affecting deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena sativa L.). Theoretical and Applied Genetics, 2013, 126(10): 2655-2670
[39]  更多...
[40]  Peng J L, Bao Z, Ren H, et al. Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology, 2004, 94: 1048-1055
[41]  Kim J G, Park B K, Yoo C H, et al. Characterization of the Xanthomonas axonopodis pv.glycines Hrp pathogenicity island. Journal of Bacteriology, 2003, 185(10): 3155-3166
[42]  Alfano J R, Collmer A. Type Ⅲ secretion system effector proteins: double agents in bacterial disease and plant defense. Annual of Review of Phytopathology, 2004, 42: 385-414
[43]  Zhu W G, Magbanua M M, White F F. Identification of two novel hpaG-associated genes in the hpaG gene cluster of Xanthomonas oryzae pv. oryzae. Journal of Bacteriology, 2000, 182(7): 1844-1853
[44]  Li P, Lu X Z, Shao M, et al. Genetic diversity of harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco. Science in China, Series C, 2004, 47(5): 461-469
[45]  Liu F Q, Liu H X, Jia Q, et al. The internal glycine-rich motif and cysteine suppress several effects of the HpaGXooc protein in plants. Phytopathology, 2006, 96(10): 1052-1059
[46]  Ren H Y, Gu G Y, Long J Y, et al. Combinative effects of a bacterial type-Ⅲ effector and a biocontrol bacterium on rice growth and disease resistance. Journal of Biosciences, 2006, 31(5): 617-627
[47]  Ren H Y, Song T, Wu T Q, et al. Effects of a biocontrol bacterium on growth and defence of transgenic rice plants expressing a bacterial type-Ⅲ effector. Annals of Microbiology, 2006, 56(4): 281-287
[48]  Chen L, Qian J, Qu S P, et al. Identification of specific fragments of HpaGXooc, a harpin from Xanthomonas oryzae pv.oryzicola, that induce disease resistance and enhance growth in plants. Phytopathology, 2008, 98(7): 781-791
[49]  Burnner S, Hurni S, Herren G, et al. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field. Plant Biotechnology Journal, 2011, 9(8): 897-910

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133