全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

生防棘孢木霉T31菌株的分离筛选及其生物学特性

, PP. 54-60

Keywords: 生防菌,分离筛选,棘孢木霉,生物学特性

Full-Text   Cite this paper   Add to My Lib

Abstract:

为评价具有生防潜力的棘孢木霉,采用平板对峙法、对扣培养法、圆盘滤膜法从长白山土样中分离筛选出木霉菌株T31,结合形态学及分子生物学分析对其进行种类鉴定,并采用菌丝生长法研究了该菌株的生物学特性。所分离的菌株T31被鉴定为棘孢木霉Trichodermaasperellum,该菌株对8种靶标菌的抑菌率在44.49%~77.91%之间,其中,对玉米大斑病菌Exserohilumturcicum、核盘菌Sclerotiniasclerotiorum、腐霉菌Pythiumuhtimumsp.及镰刀菌Fusariumsp.均有较强生长竞争优势,对玉米灰斑病菌Magnaportheoryzae具明显重寄生作用。菌株T31的最适培养基为PDA培养基,最适生长温度为30℃、最适产孢温度为25℃,最适pH值为6。持续光照可以促进木霉菌孢子产生,Zn2+、Mn2+、Ca2+和Mg2+利于菌丝生长,但是高浓度的Fe2+和Cu2+抑制菌丝生长,Mn2+和Mg2+可促进产孢。此外,与普通木霉菌相比,该菌株具有耐寒性及耐盐性。

References

[1]  更多...
[2]  Zhu Maoshan, Guan Tianshu, Cai Dawang, et al. Biological characteristics of trichoderma strain T41. Journal of Shenyang Agricultural University, 2008, 39(1): 19-23 (in Chinese) [朱茂山, 关天舒, 蔡大旺, 等. 生防木霉菌T41菌株生物学特性研究. 沈阳农业大学学报, 2008, 39(1): 19-23]
[3]  Wang Bin, Ali K B, Liu Jinliang, et al. The study on identification and biological characteristics of trichoderma longibrachiatum T1CC. Chinese Agricultural Science Bulletin , 2011, 27(5): 338-345 (in Chinese) [王斌, Ali K B, 刘金亮, 等. 长枝木霉TICC鉴定及其生物学特性研究. 中国农学通报, 2011, 27(5): 338-345]
[4]  Lin Zhenya, Ma Jia, Chen Jie, et al. Effect of salinity on the biocontro Trichoderma strain SH2303. Journal of Shanghai Jiaotong University(Agricultural Science), 2012, 30(5): 51-54 (in Chinese) [林振亚, 马佳, 陈捷, 等. 盐分对生防木霉菌株SH2303的影响. 上海交通大学学报(农业科学版), 2012, 30(5): 51-54 ]
[5]  Rojo F G, Reynose M M, Ferez M, et al. Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Protection, 2007, 26(4): 549-555
[6]  Vinale F, Sivasithamparam K, Ghisalberti E, et al. Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 2008, 40(1): 1-10
[7]  Zhu Yanheng, Xing Xiaoping, Sun Shundi. The antagonism mechanisms and diseases control trials of Trichoderma strain T97 against several plant fungal pathogens in greenhouse. Journal of Plant Protection, 2004, 31(2): 139-144 (in Chinese) [朱廷恒, 邢小平, 孙顺娣. 木霉T97菌株对几种植物病原真菌的拮抗作用机制和温室防治试验. 植物保护学报, 2004, 31(2): 139-144]
[8]  Zhang Chulong, Xu Tong. Description of trichoderma species in Hebei, Zhejiang, Yunnan and Xizang. Mycosystema , 2012, 28(4): 385-392 (in Chinese) [章初龙, 徐同. 我国河北、浙江、云南及西藏木霉种记述. 菌物学报, 2005, 24(2): 184-192]
[9]  Tang Wei, Xia Wei, Li Yahua, et al. Analysis of trichoderma asperellum chitinase gene cloning and bioinformatics. Chinese Journal of Biochemistry and Molecular Biology , 2012, 28(4): 385-392 (in Chinese) [汤伟, 夏伟, 李雅华, 等. 棘孢木霉(Trichoderma asperellum)几丁质酶基因的克隆与生物信息学分析. 中国生物化学与分子生物学报, 2012, 28(4): 385-392]
[10]  Krauss U, Hoopen G, Hidalgo E, et al. The effect of cane molasses amendment on biocontrol of frosty pod rot (Moniliophthora roreri) and black pod (Phytophthoraspp.) of cocao (Theobroma cacao) in Panama. Biological Control, 2006, 39(2): 232-239
[11]  Shoresh M, Yedidia I, Chet I. Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellumT203. Phytopathology, 2005, 95(1): 76-84
[12]  Xia Wei, Zhang Hong, Yan Yanwei, et al. Rivalry mechanisms of Trichoderma asperelluma L4 to Rhizoctonia solani. Journal of Plant Protection, 2010, 37 (5): 477-478 (in Chinese) [夏伟, 张红, 颜艳伟, 等. 棘孢木霉L4对立枯丝核菌的拮抗机制. 植物保护学报, 2010, 37 (5): 477-478]
[13]  Cotxarrera L, Trillas-Gay M I, Steinberg C, et al. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biology and Biochemistry, 2002, 34(4): 467-476
[14]  Chet I, Inbar J. Biological control of fungal pathogens. Applied Biochemistry and Biotechnology, 1994, 48(1): 37-43
[15]  Tondje P R, Roberts D P, Bon M C, et al. Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon. Biological Control, 2007, 43(2): 202-212
[16]  Hitzfeld B C, Lampert C S, Spaeth N, et al. Toxin production in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Toxicon, 2000, 38(12): 1731-1748
[17]  El-Tarabily K A, Nassar A H, Hardy G E St J, et al. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. Journal of Applied Microbiology, 2009, 106(1): 13-26
[18]  Whipps J M, Magan N. Effects of nutrient status and water potential of media on fungal growth and antagonist-pathogen interactions. Bulletin OEPP, 1987, 17(4): 581-591
[19]  Dennis C, Webster J. Antagonistic properties of species-groups of Trichoderma Ⅰ.Production of non-volatile antibiotics. Transactions of the British Mycological Society, 1971, 57(1): 25-39
[20]  Zhang Chulong, Xu Tong. Description of trichoderma species in Hebei, Zhejiang, Yunnan and Xizang. Mycosystema , 2012, 28(4): 385-392 (in Chinese) [章初龙, 徐同. 我国河北、浙江、云南及西藏木霉种记述. 菌物学报, 2005, 24(2): 184-192]
[21]  Yi Runhua, Hua Xiru, Zhou Erxun, et al. Simplify the CTAB method for rapid extraction of filamentous fungi trace DNA. Journal of Zhanjiang Ocean University, 2003, 23(6): 72-73 (in Chinese) [易润华, 朱西儒, 周而勋, 等. 简化CTAB法快速微量提取丝状真菌DNA. 湛江海洋大学学报, 2003, 23(6): 72-73]
[22]  Sivasithamparam K, Ghisalberti E L. Secondary metabolism in Trichoderma and Gliocladium. Kubicek C P, Harman G E. Trichoderma and Gliocladium. London: Taylor & Francis, 1998, 1: 139-191
[23]  Ji Mingshan, Li Boqiang, Chen Jie, et al. Biological characteristics of trichoderma viride strain TR-8. Journal of Shenyang Agricultural University , 2004, 35(3): 195-199 (in Chinese) [纪明山, 李博强, 陈捷, 等. 绿色木霉TR-8菌株的生物学特性研究. 沈阳农业大学学报, 2004, 35(3): 195-199]
[24]  Ke Fanggang, Huang Siliang, Fu Gang, et al. Identification and biological characteristics of trichoderma strain gz-2 ,a biocontrol agent against saigon banana fusarium wilt. Southwest China Journal of Agricultural , 2010, 23 (5): 1533-1539 (in Chinese) [柯仿钢, 黄思良, 付岗, 等. 西贡蕉枯萎病生防木霉菌株gz-2的鉴定及生物学特性研究. 西南农业学报, 2010, 23 (5): 1533-1539]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133