全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

小豆蔻明对人脐动脉平滑肌细胞增殖的影响及机制研究

Keywords: 小豆蔻明,胰岛素抵抗,人脐动脉平滑肌细胞,哺乳类雷帕霉素靶蛋白

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:研究小豆蔻明(CAR)对人脐动脉平滑肌细胞(HUASMCs)增殖的影响,探讨其可能作用机制。方法:采用高糖高胰岛素培养基模拟胰岛素抵抗(IR)诱导HUASMCs增殖,MTT法考察CAR对细胞增殖的作用,荧光实时定量PCR检测哺乳类雷帕霉素靶蛋白(mTOR)及其结合蛋白Raptor,RictormRNA表达,Livak法计算mRNA表达量。结果:高糖高胰岛素培养基明显促进HUASMCs的增殖。低剂量CAR(1×10-8,1×10-7,1×10-6mol·L-1)对正常及模拟IR培养的HUASMCs增殖无影响,而高剂量CAR(1×10-5,1×10-4mol·L-1)抑制细胞增殖。模拟胰岛素抵抗状态下,PD98059和LY294002干预后,CAR(1×10-5mol·L-1)对磷脂酸(PA)诱导的增殖具有抑制作用,可降低mTORmRNA的表达,同时减少Raptor,RictormRNA的含量。结论:CAR抑制细胞增殖机制与mTOR通路密切相关,可能直接或主要作用于mTOR。

References

[1]  Lee E S, Lee J O, Lee S K, et al. Caffeic acid phenethyl ester accumulates beta-catenin through GSK-3beta and participates in proliferation through mTOR in C2C12 cells[J]. Life Sci, 2009, 84 (21/22): 755.
[2]  Patursky-Polischuk I, Stolovich-Rain M, Hausner-Hano chi M, et al. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner[J]. Mol Cell Biol, 2009, 29 (3): 640.
[3]  Wang Z T, Lau C W, Chan F L, et al. Vasorelaxant effects of cardamonin and alpinetin from Alpinia henryi K. Schum[J]. J Cardiovasc Pharmacol, 2001, 37 (5): 596.
[4]  Rashid F, Ahmed R, Mahmood A, et al. Flavonoid glycosides from Prunus armeniaca and the antibacterial activity of a crude extract[J]. Arch Pharm Res, 2007, 30 (8): 932.
[5]  李胜富, 田佳. 人脐动脉平滑肌细胞体外培养的生物学特性及其永生株的初步建立[J]. 四川大学学报:医学版, 2003, 34 (2): 189.
[6]  汪圣毅, 王玉琦, 符伟国, 等. 人脐带动脉平滑肌细胞的培养及纯化[J]. 安徽医科大学学报, 2007, 42 (2): 231.
[7]  Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease[J]. Clin Biochem, 2009, 42 (13/14): 1331.
[8]  Lorenzo C, Wagenknecht L E, D\'Agostino R B, et al. Insulin resistance, beta-cell dysfunction, and conversion to type 2 diabetes in a multiethnic population: The insulin resistance atherosclerosis study[J]. Diabetes Care, 2010, 33 (1): 67.
[9]  Cifarelli V, Luppi P, Tse H M, et al. Human proinsulin C-peptide reduces high glucose-induced proliferation and NF-kappaB activation in vascular smooth muscle cells[J]. Atherosclerosis, 2008, 201 (2): 248.
[10]  Rufino M, Hernandez D, Barrios Y, et al. The GLUT-1 XbaI gene polymorphism is associated with vascular calcifications in nondiabetic uremic patients[J]. Nephron Clin Pract, 2008, 108 (3): c182.
[11]  Mussig K, Fiedler H, Staiger H, et al. Insulin-induced stimulation of JNK and the PI 3-kinase/mTOR pathway leads to phosphorylation of serine 318 of IRS-1 in C2C12 myotubes[J]. Biochem Biophys Res Commun, 2005, 335 (3): 819.
[12]  Lasithiotakis K G, Sinnberg T W, Schittek B, et al. Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells[J]. J Invest Dermatol, 2008, 128 (8): 2013.
[13]  Fang Y, Vilella-Bach M, Bachmann R, et al. Phosphatidic acid-mediated mitogenic activation of mTOR signaling[J]. Science, 2001, 294 (5548): 1942.
[14]  Avila-Flores A, Santos T, Rincon E, et al. Modulation of the mammalian target of rapamycin pathway by diacylglycerol kinase-produced phosphatidic acid[J]. J Biol Chem, 2005, 280 (11): 10091.
[15]  Lehman N, Ledford B, Di Fulvio M, et al. Phospholipase D2-derived phosphatidic acid binds to and activates ribosomal p70 S6 kinase independently of mTOR[J]. Faseb J, 2007, 21 (4): 1075.
[16]  Lock H R, Sacks S H, Robson M G. Rapamycin at subimmuno- suppressive levels inhibits mesangial cell proliferation and extra- cellular matrix production[J]. Am J Physiol Renal Physiol, 2007, 292 (1): F76.
[17]  Varma S, Khandelwal R L. Effects of rapamycin on cell proliferation and phosphorylation of mTOR and p70(S6K) in HepG2 and HepG2 cells overexpressing constitutively active Akt/PKB[J]. Biochim Biophys Acta, 2007, 1770 (1): 71.
[18]  Kim D H, Sarbassov D D, Ali S M, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery[J]. Cell, 2002, 110 (2): 163.
[19]  Sarbassov D D, Ali S M, Kim D H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor- independent pathway that regulates the cytoskeleton[J]. Curr Biol, 2004, 14 (14): 1296.
[20]  Carracedo A, Ma L, Teruya-Feldstein J, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer[J]. J Clin Invest, 2008, 118 (9): 3065.
[21]  Sarbassov D D, Ali S M, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB[J]. Mol Cell, 2006, 22 (2): 159.
[22]  Toschi A, Lee E, Xu L, et al. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin[J]. Mol Cell Biol, 2009, 29 (6): 1411.
[23]  Doug H, Chen S X, Xu H X, et al. A new antiplatelet diarylheptanoid from Alpinia blepharocalyx[J]. J Nat Prod, 1998, 61 (1): 142.
[24]  Ahmad S, Israf D A, Lajis N H, et al. Cardamonin, inhibits pro- inflammatory mediators in activated RAW 264.7 cells and whole blood[J]. Eur J Pharmacol, 2006, 538 (1/3): 188.
[25]  Dos Santos Mendes S, Candi A, Vansteenbrugge M, et al. Microarray analyses of the effects of NFkappaB or PI3K pathway inhibitors on the LPS-induced gene expression profile in RAW264.7 cells. Synergistic effects of rapamycin on LPS induced MMP9-overexpression[J]. Cell Signal, 2009, 21(7): 1109.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133