全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于糖代谢酶调节作用的中药抗糖尿病研究进展

Keywords: 糖尿病,糖代谢酶,中药,抗糖尿病药物

Full-Text   Cite this paper   Add to My Lib

Abstract:

糖尿病是危及人类健康的全球性疾病,近年来发病率不断提高。糖代谢异常是糖尿病的主要病理因素之一,相关糖代谢酶如α-葡萄糖苷酶(α-glucosidase),葡萄糖-6-磷酸酶(glucose-6-phosphatase,G-6-P),糖原磷酸化酶(glycogenphosphorylase,GP)和糖原合成酶激酶-3(glycogensynthasekinase-3,GSK-3)参与并调控了糖代谢过程,因此调节糖代谢酶活性对糖尿病的治疗有重要意义。中药因其高效低毒作用而被广泛研究和应用,多种中药提取物和成分被证实为糖代谢酶的调节剂,与抗糖尿病西药相比,中药治疗糖尿病具有安全、可靠、价格低廉等优点。该文就糖代谢酶调节的中药抗糖尿病研究作一简要的综述。

References

[1]  Lochhead P A, Coghlan M, Rice S Q, et al. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphoenolpyruvate carboxykinase gene expression[J]. Diabetes, 2001, 50: 937.
[2]  刘率男,申竹芳.糖尿病治疗新靶点糖原合成酶激酶-3抑制剂的研究进展[J].药学学报,2007,42(12):1227.
[3]  Kumar M, Rawat P, Khan M F, et al. Phenolic glycosides from Dodecadenia grandiflora and their glucose-6-phosphatase inhibitory activity [J]. Fitoterapia, 2010, 81: 475.
[4]  Amin K A, Awad E M, Nagy M A. Effects of panax quinquefolium onstreptozotocin-induced diabetic rats: role of C-peptide, nitric oxide andoxidative stress[J]. Int J Clin Exp Med, 2011, 4(2): 136.
[5]  Yuan H D, Piao G C. An active part of Artemisia sacrorum Ledeb. suppresses gluconeogenesis through AMPK mediated GSK3β and CREB phosphorylation in human HepG2 cells[J]. Biosci Biotechnol Biochem, 2011, 75(6): 1079.
[6]  Kumar R, Sharma B, Tomar N R, et al. In vivo evaluation of hypoglycemic activity of Aloe spp. and identification of its mode of action on GLUT-4 gene expression in vitro[J]. Appl Biochem Biotechnol, 2011, 164(8): 1246.
[7]  Perez-Gutierrez R M, Muiz-Ramirez A, Gomez Y G, et al. Antihyperglycemic, antihyperlipidemic and antiglycation effects of Byrsonima crassifolia fruit and seed in normal and streptozotocin-induced diabetic rats[J]. Plant Foods Hum Nutr, 2010, 65(4): 350.
[8]  Gupta S, Sharma S B, Singh U R, et al. Elucidation of mechanism of action of Cassia auriculata leaf extract for its antidiabetic activity in streptozotocin-induced diabetic rats[J]. J Med Food, 2010, 13(3): 528.
[9]  Chung M J, Cho S Y, Bhuiyan M J, et al. Anti-diabetic effects of lemon balm (Melissa officinalis) essential oil on glucose- and lipid-regulating enzymes in type 2 diabetic mice[J]. Br J Nutr, 2010, 104(2):180.
[10]  Panda D K, Ghosh D, Bhat B, et al. Diabetictherapeutic effects of ethyl acetate fraction from the roots of Musa paradisiaca and seeds of Eugenia jambolana in streptozotocin-induced male diabetic rats[J]. Methods Find Exp Clin Pharmacol, 2009, 31(9): 571.
[11]  Andrade-Cetto A, Vázquez R C. Gluconeogenesis inhibition and phytochemical composition of two Cecropia species [J]. J Ethnopharmacol, 2010, 130: 93.
[12]  Clore J N, Stillman J, Sugerman H. Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes [J]. Diabetes, 2000, 49: 969.
[13]  Xia X, Yan J, Shen Y, et al. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis[J]. PLoS One, 2011, 6(2): e16556.
[14]  Mues C, Zhou J, Manolopoulos K N, et al. Regulation of glucose-6-phosphatase gene expression by insulin and metformin [J]. Horm Metab Res, 2009, 41: 730.
[15]  Goodarz Danaei, Mariel M Finucane, Yuan Lu, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemio-logical studies with 370 country-years and 2.7 million participants [J]. The Lancet, 2011, 378 (9785): 31.
[16]  Kumar M, Rawat P, Khan M F, et al. Phenolic glycosides from Dodecadenia grandiflora and their glucose-6-phosphatase inhibitory activity[J]. Fitoterapia, 2010, 81(6): 475.
[17]  MacAulay K, Woodgett J R. targeting glycogen synthase kinase-3 (GSK-3) in the treatment of type 2 diabetes [J]. Expert Opin Ther Targets, 2008, 12:1265.
[18]  孙宏斌.以糖代谢干预为基础的新药研究与开发[J].中国药科大学学报,2006,37(1): 1.
[19]  Shibano M, Kakutani K, Taniguchi M, et al. Antioxidant constituents in the dayflower (Commelina communis L.) and their alpha-glucosidase-inhibitory activity[J]. J Nat Med, 2008, 62: 349.
[20]  Chougale A D, Ghadyale V A, Panaskar S N,et al. Alpha glucosidase inhibition by stem extract of Tinospora cordifolia[J]. J Enzyme Inhib Med Chem, 2009, 24: 998.
[21]  Ashok K T, Ravindra M K, Sachin B A, et al. Reduction in post-prandial hyperglycemic excursion through α-glucosidase inhibition by β-acetamido carbonyl compounds[J]. Bioorg Med Chem Lett, 2008, 18: 4130.
[22]  Baggio L L, Drucker D J. Biology of incretins: GLP-1 and GIP [J]. Gastroenterology, 2007, 132: 2131.
[23]  季芳,肖国春,倪京满,等.药用植物来源的α-葡萄糖苷酶抑制剂研究进展[J].中国中药杂志,2010,35(12): 1633.
[24]  王威,三浦俊宏,史红,等.复方中药糖脂清对KK-Ay小鼠糖脂代谢影响的机制探讨[J].天津中医药,2008,25(3): 223.
[25]  耿鹏, 石倩, 杨洋, 等. 桑白皮生物碱与绿茶茶多酚的联合降糖作用[J]. 南开大学学报:自然科学版, 2011, 44(3): 76.
[26]  Ademiluyi A O, Oboh G. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro[J]. Exp Toxicol Pathol, 2011, doi.org/10.1016/j.bbr.2011.03.031.
[27]  Zhou H, Xing J, Liu S, et al. Screening and determination for potential α-glucosidase inhibitors from leaves of Acanthopanax senticosus Harms by using UF-LC/MS and ESI-MS(n) [J]. Phytochem Anal, 2012,23(4):315.
[28]  Ghadyale V, Takalikar S, Haldavnekar V, et al. Effective control of postprandial glucose level through inhibition of intestinal alpha glucosidase by Cymbopogon martinii(Roxb.) [J]. Evid Based Complement Alternat Med, 2012,doi:10.1155/2012/372909.
[29]  Ghosh S, Ahire M, Patil S, et al. Antidiabetic activity of Gnidia glauca and Dioscorea bulbifera: potent amylase and glucosidase inhibitors[J]. Evid Based Complement Alternat Med, 2012,doi:10.1155/2012/929051.
[30]  Adisakwattana S, Chanathong B. Alpha-glucosidase inhibitory activity and lipid-lowering mechanisms of Moringa oleifera leaf extract[J]. Eur Rev Med Pharmacol Sci, 2011, 15(7): 803.
[31]  Johnson M H, Lucius A, Meyer T, et al. Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of α-amylase and α-glucosidase by highbush blueberry (Vaccinium corombosum) [J]. J Agric Food Chem, 2011, 59(16): 8923.
[32]  Kim S H, Jo S H, Kwon Y I, et al. Effects of onion (Allium cepa L.) extract administration on intestinal α-glucosidases activities and spikes in postprandial blood glucose levels in SD rats model[J]. Int J Mol Sci, 2011, 12(6): 3757.
[33]  Mohamed Sham Shihabudeen H, Hansi Priscilla D, Thirumurugan K. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats[J]. Nutr Metab (Lond), 2011, 8(1): 46.
[34]  Jo S H, Ha K S, Moon K S, et al. In vitro and in vivo anti-hyperglycemic effects of omija (Schizandra chinensis) fruit[J]. Int J Mol Sci, 2011, 12(2): 1359.
[35]  Okoli C O, Obidike I C, Ezike A C, et al. Studies on the possible mechanisms of antidiabetic activity of extract of aerial parts of Phyllanthus niruri[J]. Pharm Biol, 2011, 49(3): 248.
[36]  Senthil A M, Hazeena B V. Alpha-glucosidase inhibitory and hypoglycemic activities of Areca catechu extract [J]. Pharmacogn Mag, 2008, 4 (15); 223.
[37]  Subramanian R, AsmawiM Z, Sadikun A. In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide[J]. Acta Biochim Pol, 2008, 55 (2); 391.
[38]  杨秀芳, 吴明鑫. 虎杖中α-葡萄糖苷酶抑制剂的初步研究[J]. 中成药, 2008, 30 (1); 4.
[39]  Deguchi Y, Miyazaki K. Anti-hyperglycemic and anti-hyperlipidemic effects of guava leaf extract[J]. Nutr Metab (Lond), 2010, 2(7): 9.
[40]  Yu L, Shirai N, Suzuki H, et al. The effect of methanol extracts of tsao-ko (Amomum tsao-ko Crevost et Lemaire) on digestive enzyme and antioxidant activity in vitro, and plasma lipids and glucose and liver lipids in mice[J]. J Nutr Sci Vitaminol (Tokyo), 2010, 56(3): 171.
[41]  Shinde J, Taldone T, Barletta M, et al. α-Glucosidase inhibitory activity of Syzygium cumini (Linn.) Skeels seed kernel in vitroand in Goto-Kakizaki (GK) rats [J]. Carbohydr Res, 2008, 343: 1278.
[42]  Zhang J, Tiller C, Shen J, et al. Antidiabetic properties of polysaccharide and polyphenolic-enriched fractions from the brown seaweed ascophyllum nodosum [J]. Can J Physiol Pharmacol, 2007, 85: 1116.
[43]  Li Y, Huang T H, Yamahara J. Salacia root, a unique ayurvedic medicine, meets multiple targets in diabetes and obesity [J]. Life Sci, 2008, 82:1045.
[44]  Lo Piparo E, Scheib H, Frei N. Flavonoids for controlling starch digestion: structural requirements for inhibiting human α-amylase [J]. J Med Chem, 2008, 51:3555.
[45]  Kawabata J, Mizuhata K, Sato E, et al. 6-Hydroxyflavonoids as α-glucosidase inhibitors from marjoram (Origanum majorana) leaves[J]. Biosci Biotechnol Biochem, 2003, 67 (2): 445.
[46]  Brindis F, Rodríguez R, Bye R, et al. (Z)-3-Butylidenephthalide from Ligusticum porteri, an α-glucosidase inhibitor [J]. J Nat Prod, 2011, 74(3): 314.
[47]  Du Z Y, Liu R R, ShaoW Y, et al. α-Glucosidase inhibition of natural curcuminoids and curcumin analogs [J]. Eur J Med Chem, 2006, 41: 213.
[48]  Asano N, Yamashita T, Yasuda K, et al. Polyhydroxylated alkaloids isolated from mulberry trees(Morusalba L.) and silkworms (Bombyx mori L.) [J]. J Agric Food Chem, 2001, 49(9): 4208.
[49]  Liu L, Deng Y, Yu S, et al. Berberine attenuates intestinal disaccharidases in streptozotocin-induced diabetic rats[J]. Pharmazie, 2008, 63(5): 384.
[50]  Bae E A, Shin J E, Kim D H. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect[J]. Biol Pharm Bull, 2005, 28(10): 1903.
[51]  全吉淑,尹学哲,金明,等.大豆皂苷对α-葡萄糖苷酶抑制作用的研究[J].中药材,2003,26(9):654.
[52]  Fatmawati S, Shimizu K, Kondo R. Ganoderol B: a potent α-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum[J]. Phytomedicine, 2011, 18(12):1053.
[53]  Attaur-Rahman, Zareen S, Choudhary M I, et al. α-Glucosidase inhibitory activity of triterpenoids from Cichorium intybus [J]. J Nat Prod, 2008, 71 (5): 910.
[54]  曹朝晖,董晓英,方敏,等.甲壳低聚糖对α-葡萄糖苷酶活性的影响及降糖作用[J].中国生化药物杂志,2005,26(6): 327.
[55]  Lin W L, Su W W, Cai X Y, et al. Fermentation effects of oligosaccharides of Radix Ophiopogonis on alloxan-induced diabetes in mice[J]. Int J Biol Macromol, 2011, 49(2): 194.
[56]  Staehr P, Hother Nielsen O, Beck Nielsen H. Hepatic glucose production: therapeutic target in type 2 diabetes [J]. Diabetes Obes Metab, 2002, 4(4): 215.
[57]  Hicks J, Wartchow E, Mierau G. Glycogen storage diseases: a brief review and update on clinical features, genetic abnormalities, pathologic features, and treatment [J]. Ultrastruct Pathol, 2011, 35: 183.
[58]  Onuma H, Oeser J K, Nelson B A, et al. Insulin and epidermal growth factor suppress basal glucose-6-phosphatase catalytic subunit gene transcription through overlapping but distinct mechanisms [J]. Biochem J, 2009, 417: 611.
[59]  Chou J Y, Mansfield B C. Mutations in the glucose-6-phosphatase-α (G6PC) gene that cause type Ia glycogen storage disease [J]. Hum Mutat, 2008, 29: 921.
[60]  Jope R S, Yuskaitis C J, Beurel E. Glycogen synthase kinase-3(GSK3): inflammation, diseases, and therapeutics [J]. Neurochem Res, 2007, 32: 577.
[61]  Punithavathi V R, Prince P S, Kumar R, et al. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats[J]. Eur J Pharmacol, 2011, 650(1): 465.
[62]  Yoshinari O, Igarashi K. Anti-diabetic effect of trigonelline and nicotinic acid, on KK-A(y) mice[J]. Curr Med Chem, 2010, 17(20): 2196.
[63]  Liu Q, Zhang Y, Lin Z, et al. Danshen extract 15,16-dihydrotanshinone I functions as a potential modulator against metabolic syndrome through multi-target pathways[J]. J Steroid Biochem Mol Biol, 2010, 120(4/5): 155.
[64]  Pari L, Sankaranarayanan C. Beneficial effects of thymoquinone on hepatic key enzymes in streptozotocin-nicotinamide induced diabetic rats[J]. Life Sci, 2009, 85(23/26): 830.
[65]  Tian L Y, Bai X, Chen X H, et al. Anti-diabetic effect of methylswertianin and bellidifolin from Swertia punicea Hemsl. and its potential mechanism[J]. Phytomedicine, 2010, 17(7): 533.
[66]  Rasineni K, Bellamkonda R, Singareddy S R, et al. Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats[J]. Pharmacognosy Res, 2010, 2(3): 195.
[67]  Sekar D S, Sivagnanam K, Subramanian S. Antidiabetic activity of Momordica charantia seeds on streptozotocin induced diabetic rats[J]. Pharmazie, 2005, 60(5): 383.
[68]  陈军,柳军,龚彦春,等.新型糖原磷酸化酶抑制剂熊果酸衍生物的合成及生物活性研究 [J].中国药科大学学报,2006,37(5): 397.
[69]  Wen Xa, Liu J, Zhang Ly,et al. Synthesis and biological evaluation of arjunolic acid, bayogenin, hederagonic acid and 4-epi-hederagonic acid as glycogen phosphorylase inhibitors [J]. Chin J Nat Med, 2010, 8: 441.
[70]  Sivakumar S, Subramanian S P. D-pinitol attenuates the impaired activities of hepatic key enzymes in carbohydrate metabolism of streptozotocin-induced diabetic rats[J]. Gen Physiol Biophys, 2009, 28(3): 233.
[71]  Palsamy P, Subramanian S. Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-nicotin-amide-induced diabetic rats[J]. Chem Biol Interact, 2009, 179(2/3): 356.
[72]  Yin J, Zuberi A, Gao Z, et al. Shilianhua extract inhibits GSK-3beta and promotes glucose metabolism [J]. Am J Physiol Endocrinol Metab, 2009, 296(6): E1275.
[73]  Li B Y, Li X L, Gao H Q, et al. Grape seed procyanidin B2 inhibits advanced glycation end product-induced endothelial cell apoptosis through regulating GSK-3β phosphorylation [J]. Cell Biol Int, 2011, 35(7): 663.
[74]  Lv L, Wu S Y, Wang G F, et al. Effect of astragaloside IV on hepatic glucose-regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin[J]. Phytother Res, 2010, 24(2): 219.
[75]  Wu S Y, Wang G F, Liu Z Q, et al. Effect of geniposide, a hypoglycemic glucoside, on hepatic regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin[J]. Acta Pharmacol Sin, 2009, 30(2): 202.
[76]  Ha do T, Trung T N, Hien T T, et al. Selected compounds derived from Moutan Cortex stimulated glucose uptake and glycogen synthesis via AMPK activation in human HepG2 cells[J]. J Ethnopharmacol, 2010, 131(2): 417.
[77]  Ha do T, Tuan D T, Thu N B, et al. Palbinone and triterpenes from Moutan Cortex (Paeonia suffruticosa, Paeoniaceae) stimulate glucose uptake and glycogen synthesis via activation of AMPK in insulin-resistant human HepG2 Cells[J]. Bioorg Med Chem Lett, 2009, 19(19): 5556.
[78]  Yuan H D, Piao G C. An active part of Artemisia sacrorum Ledeb. suppresses gluconeogenesis through AMPK mediated GSK3β and CREB phosphorylation in human HepG2 cells[J]. Biosci Biotechnol Biochem, 2011, 75(6):1079.
[79]  Jang S M, Kim M J, Choi M S, et al. Inhibitory effects of ursolic acid on hepatic polyol pathway and glucose production in streptozotocin-induced diabetic mice[J]. Metabolism, 2010, 59(4): 512.
[80]  Kang L J, Lee H B, Bae H J, et al. Antidiabetic effect of propolis: reduction of expression of glucose-6-phosphatase through inhibition of Y279 and Y216 autophosphorylation of GSK-3alpha/beta in HepG2 cells [J]. Phytother Res, 2010, 24: 1554.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133