Fabri R L,Nogueira M S,Braga F G,et al. Mitracarpus frigidus aerial parts exhibited potent antimicrobial, antileishmanial, and antioxidant effects[J]. Bioresour Technol,2009,100(1):428.
[8]
Aremu A O,Fawole O A,Chukwujekwu J C,et al. In vitro antimicrobial, anthelmintic and cyclooxygenase-inhibitory activities and phytochemical analysis of Leucosidea sericea[J]. J Ethnopharmacol,2010,131(1):22.
[9]
Uzel A,Sorkun K,Oncag O,et al. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples[J]. Microbiol Res,2005,160(2):189.
Cushnie T P,Lamb A J. Antimicrobial activity of flavonoids[J]. Int J Antimicrob Agents,2005,26(5):343.
[13]
Avila H P,Smania E F,Monache F D,et al. Structure-activity relationship of antibacterial chalcones[J]. Bioorg Med Chem,2008,16(22):9790.
[14]
Liu X L,Xu Y J,Go M L. Functionalized chalcones with basic functionalities have antibacterial activity against drug sensitive Staphylococcus aureus[J]. Eur J Med Chem,2008,43:1681.
[15]
Alvarez M L,Zarelli V E,Pappano N B,et al. Bacteriostatic action of synthetic polyhydroxylated chalcones against Escherichia coli[J]. Biocell,2004,28(1):31.
[16]
Batovska D,Parushev S,Stamboliyska B,et al. Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted[J]. Eur J Med Chem,2009,44(5):2211.
[17]
Nielsen S F,Boesen T,Larsen M,et al. Antibacterial chalcones-bioisosteric replacement of the 4\'-hydroxy group[J]. Bioorg Med Chem,2004, 12(11):3047.
[18]
Nowakowska Z,Kedzia B,Schroeder G. Synthesis, physicochemical properties and antimicrobial evaluation of new (E)-chalcones[J]. Eur J Med Chem,2008,43(4):707.
[19]
Babu K S,Babu T H,Srinivas P V,et al. Synthesis and in vitro study of novel 7-O-acylderivatives of oroxylin A as antibacterial agents[J]. Bioorg Med Chem Lett,2005,15(17):3953.
[20]
Babu K S,Babu T H,Srinivas P V,et al. Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents[J]. Bioorg Med Chem Lett,2006,16(1):221.
[21]
Bernal P,Zloh M,Taylor P W. Disruption of d-alanyl esterification of Staphylococcus aureus cell wall teichoic acid by the β-lactam resistance modifier (-)-epicatechin gallate[J]. J Antimicrob Chemother,2009,63(6):1156.
[22]
Bernal P,Lemaire S,Pinho M G,et al. Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2a-mediated β-lactam resistance by delocalizing PBP2[J]. J Biol Chem,2010,285:24055.
[23]
Stapleton P D,Shah S,Ehlert K,et al. The β-lactam-resistance modifier (-)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus[J]. Microbiology,2007,153(Pt 7):2093.
[24]
Wang Q,Wang H,Xie M. Antibacterial mechanism of soybean isoflavone on Staphylococcus aureus[J]. Arch Microbiol,2010,192(11):893.
[25]
Eumkeb G,Sakdarat S,Siriwong S. Reversing Bata-lactam antibiotic resistance of Staphylococcus aureus with galangin from Alpinia officinarum Hance and synergism with ceftazidime[J]. Phytomedicin,2010,18(1):40.
[26]
Maresso A W,Schneewind O. Sortase as a target of anti-infective therapy[J]. Pharmacol Rev,2008,60(1):128.
[27]
Kang S S,Kim J G,Lee T H,et al. Flavonols inhibit sortases and sortasemediated Staphylococcus aureus clumping to fibrinogen[J]. Biol Pharm Bull,2006,29(8):1751.
[28]
Choi O,Yahiro K,Morinaga N,et al. Inhibitory effects of various plant polyphenols on the toxicity of staphylococcal alpha-toxin[J]. Microb Pathog,2007,42(5/6):215.
[29]
Oh D R,Kim J R,Kim Y R. Genistein inhibits Vibrio vulnificus adhesion and cytotoxicity to HeLa cells[J]. Arch Pharm Res,2010,33(5):787.
[30]
Delehanty J B,Johnson B J,Hickey T E,et al. Binding and neutralization of lipopolysaccharides by plant proanthocyanidins[J]. J Nat Prod,2007,70(11):1718.
[31]
Shah S,Stapleton P D,Taylor P W. The polyphenol (-)-epicatechin gallate disrupts the secretion of virulence-related proteins by Staphylococcus aureus[J]. Lett Appl Microbiol,2008,46(2):181.
[32]
Qiu J,Jiang Y,Xia L,et al. Subinhibitory concentrations of licochalcone A decrease α-toxin production in both methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates[J]. Lett Appl Microbiol,2010,50:223.
[33]
Qiu J,Feng H,Xiang H,et al. Influence of subinhibitory concentrations of licochalcone A on the secretion of enterotoxins A and B by Staphylococcus aureus[J]. FEMS Microbiol Lett,2010,307(2):135.
Li H Q,Shi L,Li Q S,et al. Synthesis of C(7) modified chrysin derivatives designing to inhibit β-ketoacyl-acyl carrier protein synthase III (FabH) as antibiotics[J]. Bioorg Med Chem,2009,17(17):6264.
[37]
Otsuka N,Liu M H,Shiota S,et al. Antimethicillin resistant Staphylococcus aureus (MRSA) compounds isolated from Laurus nobilis[J]. Biol Pharm Bull,2008,31(9):1794.
[38]
Park K D,Cho S J. Synthesis and antimicrobial activities of 3-O-alkyl analogues of (+)-catechin: improvement of stability and proposed action mechanism[J]. Eur J Med Chem,2010,45(3):1028.
[39]
Mughal E U,Ayaz M,Hussain Z,et al. Synthesis and antibacterial activity of substituted flavones, 4-thioflavones and 4-iminoflavones[J]. Bioorg Med Chem,2006, 14(14):4704.
Tsuchiya H,Iinuma M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua[J]. Phytomedicine,2000,7(2):161.
[42]
Bernard F X,Sable S,Cameron B,et al. Glycosylated flavones as selective inhibitors of topoisomerase IV[J]. Antimicrob Agents Chemother,1997,41(5):992.
[43]
Haraguchi H,Tanimoto K,Tamura Y,et al. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflate[J]. Phytochemistry,1998,48(1):125.
[44]
Cushnie T P,Lamb A J. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss[J]. Ethnopharmacol,2005,101(1/3):243.
[45]
Tamba Y,Ohba S,Kubota M,et al. Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes[J]. Biophys J,2007,92(9):3178.
[46]
Kusuda M,Inada K,Ogawa T O,et al. Polyphenolic constituent structures of Zanthoxylum piperitum fruit and the antibacterial effects of its polymeric procyanidin on methicillin-resistant Staphylococcus aureus[J]. Biosci Biotechnol Biochem,2006,70(6):1423.
[47]
Gradisar H,Pristovsek P,Plaper A,et al. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site[J]. J Med Chem,2007,50(2):264.
[48]
Navarro-Martinez M D,Navarro-Peran E,Cabezas-Herrera J,et al. Antifolate activity of epigallocatechin gallate against Stenotrophomonas maltophilia[J]. Antimicrob Agents Chemother,2005,49(7):2914.
[49]
Chinnam N,Dadi P K,Sabri S A,et al. Dietary bioflavonoids inhibit Escherichia coli ATP synthase in a differential manner[J]. Int J Biol Macromol,2010,46(5):478.
[50]
Wu D,Kong Y,Han C,et al. D-Alanine: d-alanine ligase as a new target for the flavonoids quercetin and apigenin[J]. Int J Antimicrob Agents,2008,32(5):421.
[51]
Zhang Y M,Rock C O. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase[J]. Biol Chem,2004,279(30):30994.
[52]
Zhang L,Kong Y H,Wu D L,et al. Three flavonoids targeting the beta-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: crystal structure characterization with enzymatic inhibition assay[J]. Protein Sci,2008,17(11):1971.
[53]
Brown A K,Papaemmanouil A,Bhowruth V,et al. Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II[J]. Microbiology,2007, 153(10):3314.
[54]
Jeong K W,Lee J Y,Kang D I,et al. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis[J]. Nat Prod,2009, 72(4):719.
[55]
Gordon N C,Wareham D W. Antimicrobial activity of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against clinical isolates of Stenotrophomonas maltophilia[J]. Int J Antimicrob Agents,2010,36(2):129.
[56]
Li B H,Hang R,Du Y T,et al. Inactivation mechanism of the ketoacyl- reductase of bacterial type-II fatty acid synthase by epigallocatechin gallate[J]. Biochem Cell Biol,2006,84 (5):755.
[57]
Lechner D,Gibbons S,Bucar F. Modulation of isoniazid susceptibility by flavonoids in Mycobacterium[J]. Phytochem Lett,2008,1:71.
[58]
Chang P C,Li H Y,Tang H J,et al. In vitro synergy of baicalein and gentamicin against vancomycin-resistant Enterococcus[J]. J Microbiol Immunol Infect,2007,40(1):56.
[59]
Lee Y S,Kang O H,Choi J G,et al. Synergistic effects of the combination of galangin with gentamicin against methicillin-resistant Staphylococcus aureus[J]. J Microbiol,2008,46(3):283.
[60]
Stapleton P D,Shah S,Anderson J C,et al. Modulation of β-lactam resistance in Staphylococcus aureus by catechins and gallates[J]. Int J Antimicrob Agents,2004,23(5):462.