全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黄酮类化合物抑菌作用研究进展

Keywords: 黄酮,抑菌活性,协同作用,构效关系,作用机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

细菌耐药性是全球公共卫生面临的最严重的威胁之一,迫切需要寻找到新的有效的治疗药物。黄酮是广泛存在于植物中的一大类化合物,具有直接抑菌、协同抑菌及抑制细菌毒性等作用。本文主要对2005年以来黄酮类化合物抑菌作用及其机制研究进展进行概述。

References

[1]  李叶,唐浩国,刘建学.黄酮类化合物研究进展[J].农产品加工, 2008,12:53.
[2]  迟晓喆,曹光群.桑叶总黄酮的提取及其抑菌活性研究[J].林产化学与工业,2012,32(2): 163.
[3]  陈乃东,周守标,罗琦,等.不同提取剂对春花胡枝子黄酮含量及抑菌活性影响的研[J].中国卫生检验杂志,2007,17(2):193.
[4]  李国章,于华忠,卜晓英,等.桑椹籽中黄酮的CO2超临界流体萃取及抑菌作用研究[J].现代食品科技,2006,22(2): 86.
[5]  姚新生.天然药物化学[M].北京:人民卫生出版社,2001:167.
[6]  谭仁祥,孟军才,陈道峰,等.植物成分分析[M].北京:科学出版社,2002:486.
[7]  Fabri R L,Nogueira M S,Braga F G,et al. Mitracarpus frigidus aerial parts exhibited potent antimicrobial, antileishmanial, and antioxidant effects[J]. Bioresour Technol,2009,100(1):428.
[8]  Aremu A O,Fawole O A,Chukwujekwu J C,et al. In vitro antimicrobial, anthelmintic and cyclooxygenase-inhibitory activities and phytochemical analysis of Leucosidea sericea[J]. J Ethnopharmacol,2010,131(1):22.
[9]  Uzel A,Sorkun K,Oncag O,et al. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples[J]. Microbiol Res,2005,160(2):189.
[10]  柯昌松,王轰,牟伟丽.番石榴叶提取物槲皮素的抑菌效果[J].食品研究与开发, 2013, 34(2):7.
[11]  魏福华,黄峰华,张永忠.大豆异黄酮抑菌活性及其热稳定性研究[J].大豆科学,2013,32(1): 115.
[12]  Cushnie T P,Lamb A J. Antimicrobial activity of flavonoids[J]. Int J Antimicrob Agents,2005,26(5):343.
[13]  Avila H P,Smania E F,Monache F D,et al. Structure-activity relationship of antibacterial chalcones[J]. Bioorg Med Chem,2008,16(22):9790.
[14]  Liu X L,Xu Y J,Go M L. Functionalized chalcones with basic functionalities have antibacterial activity against drug sensitive Staphylococcus aureus[J]. Eur J Med Chem,2008,43:1681.
[15]  Alvarez M L,Zarelli V E,Pappano N B,et al. Bacteriostatic action of synthetic polyhydroxylated chalcones against Escherichia coli[J]. Biocell,2004,28(1):31.
[16]  Batovska D,Parushev S,Stamboliyska B,et al. Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted[J]. Eur J Med Chem,2009,44(5):2211.
[17]  Nielsen S F,Boesen T,Larsen M,et al. Antibacterial chalcones-bioisosteric replacement of the 4\'-hydroxy group[J]. Bioorg Med Chem,2004, 12(11):3047.
[18]  Nowakowska Z,Kedzia B,Schroeder G. Synthesis, physicochemical properties and antimicrobial evaluation of new (E)-chalcones[J]. Eur J Med Chem,2008,43(4):707.
[19]  Babu K S,Babu T H,Srinivas P V,et al. Synthesis and in vitro study of novel 7-O-acylderivatives of oroxylin A as antibacterial agents[J]. Bioorg Med Chem Lett,2005,15(17):3953.
[20]  Babu K S,Babu T H,Srinivas P V,et al. Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents[J]. Bioorg Med Chem Lett,2006,16(1):221.
[21]  Bernal P,Zloh M,Taylor P W. Disruption of d-alanyl esterification of Staphylococcus aureus cell wall teichoic acid by the β-lactam resistance modifier (-)-epicatechin gallate[J]. J Antimicrob Chemother,2009,63(6):1156.
[22]  Bernal P,Lemaire S,Pinho M G,et al. Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2a-mediated β-lactam resistance by delocalizing PBP2[J]. J Biol Chem,2010,285:24055.
[23]  Stapleton P D,Shah S,Ehlert K,et al. The β-lactam-resistance modifier (-)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus[J]. Microbiology,2007,153(Pt 7):2093.
[24]  Wang Q,Wang H,Xie M. Antibacterial mechanism of soybean isoflavone on Staphylococcus aureus[J]. Arch Microbiol,2010,192(11):893.
[25]  Eumkeb G,Sakdarat S,Siriwong S. Reversing Bata-lactam antibiotic resistance of Staphylococcus aureus with galangin from Alpinia officinarum Hance and synergism with ceftazidime[J]. Phytomedicin,2010,18(1):40.
[26]  Maresso A W,Schneewind O. Sortase as a target of anti-infective therapy[J]. Pharmacol Rev,2008,60(1):128.
[27]  Kang S S,Kim J G,Lee T H,et al. Flavonols inhibit sortases and sortasemediated Staphylococcus aureus clumping to fibrinogen[J]. Biol Pharm Bull,2006,29(8):1751.
[28]  Choi O,Yahiro K,Morinaga N,et al. Inhibitory effects of various plant polyphenols on the toxicity of staphylococcal alpha-toxin[J]. Microb Pathog,2007,42(5/6):215.
[29]  Oh D R,Kim J R,Kim Y R. Genistein inhibits Vibrio vulnificus adhesion and cytotoxicity to HeLa cells[J]. Arch Pharm Res,2010,33(5):787.
[30]  Delehanty J B,Johnson B J,Hickey T E,et al. Binding and neutralization of lipopolysaccharides by plant proanthocyanidins[J]. J Nat Prod,2007,70(11):1718.
[31]  Shah S,Stapleton P D,Taylor P W. The polyphenol (-)-epicatechin gallate disrupts the secretion of virulence-related proteins by Staphylococcus aureus[J]. Lett Appl Microbiol,2008,46(2):181.
[32]  Qiu J,Jiang Y,Xia L,et al. Subinhibitory concentrations of licochalcone A decrease α-toxin production in both methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates[J]. Lett Appl Microbiol,2010,50:223.
[33]  Qiu J,Feng H,Xiang H,et al. Influence of subinhibitory concentrations of licochalcone A on the secretion of enterotoxins A and B by Staphylococcus aureus[J]. FEMS Microbiol Lett,2010,307(2):135.
[34]  何旭瑛.细菌耐药性产生的机制与最新研究进展[J].临床和实验医学杂志,2009,8(11): 117.
[35]  Smejkal K,Chudik S,Kloucek P,et al. Antibacterial C-geranylflavonoids from Paulownia tomentosa fruits[J]. J Nat Prod,2008,71(4):706.
[36]  Li H Q,Shi L,Li Q S,et al. Synthesis of C(7) modified chrysin derivatives designing to inhibit β-ketoacyl-acyl carrier protein synthase III (FabH) as antibiotics[J]. Bioorg Med Chem,2009,17(17):6264.
[37]  Otsuka N,Liu M H,Shiota S,et al. Antimethicillin resistant Staphylococcus aureus (MRSA) compounds isolated from Laurus nobilis[J]. Biol Pharm Bull,2008,31(9):1794.
[38]  Park K D,Cho S J. Synthesis and antimicrobial activities of 3-O-alkyl analogues of (+)-catechin: improvement of stability and proposed action mechanism[J]. Eur J Med Chem,2010,45(3):1028.
[39]  Mughal E U,Ayaz M,Hussain Z,et al. Synthesis and antibacterial activity of substituted flavones, 4-thioflavones and 4-iminoflavones[J]. Bioorg Med Chem,2006, 14(14):4704.
[40]  Ikigai H,Nakae T,Hara Y,et al. Bactericidal catechins damage the lipid bilayer[J]. Biochim Biophys Acta,1993,1147(1):132.
[41]  Tsuchiya H,Iinuma M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua[J]. Phytomedicine,2000,7(2):161.
[42]  Bernard F X,Sable S,Cameron B,et al. Glycosylated flavones as selective inhibitors of topoisomerase IV[J]. Antimicrob Agents Chemother,1997,41(5):992.
[43]  Haraguchi H,Tanimoto K,Tamura Y,et al. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflate[J]. Phytochemistry,1998,48(1):125.
[44]  Cushnie T P,Lamb A J. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss[J]. Ethnopharmacol,2005,101(1/3):243.
[45]  Tamba Y,Ohba S,Kubota M,et al. Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes[J]. Biophys J,2007,92(9):3178.
[46]  Kusuda M,Inada K,Ogawa T O,et al. Polyphenolic constituent structures of Zanthoxylum piperitum fruit and the antibacterial effects of its polymeric procyanidin on methicillin-resistant Staphylococcus aureus[J]. Biosci Biotechnol Biochem,2006,70(6):1423.
[47]  Gradisar H,Pristovsek P,Plaper A,et al. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site[J]. J Med Chem,2007,50(2):264.
[48]  Navarro-Martinez M D,Navarro-Peran E,Cabezas-Herrera J,et al. Antifolate activity of epigallocatechin gallate against Stenotrophomonas maltophilia[J]. Antimicrob Agents Chemother,2005,49(7):2914.
[49]  Chinnam N,Dadi P K,Sabri S A,et al. Dietary bioflavonoids inhibit Escherichia coli ATP synthase in a differential manner[J]. Int J Biol Macromol,2010,46(5):478.
[50]  Wu D,Kong Y,Han C,et al. D-Alanine: d-alanine ligase as a new target for the flavonoids quercetin and apigenin[J]. Int J Antimicrob Agents,2008,32(5):421.
[51]  Zhang Y M,Rock C O. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase[J]. Biol Chem,2004,279(30):30994.
[52]  Zhang L,Kong Y H,Wu D L,et al. Three flavonoids targeting the beta-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori: crystal structure characterization with enzymatic inhibition assay[J]. Protein Sci,2008,17(11):1971.
[53]  Brown A K,Papaemmanouil A,Bhowruth V,et al. Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II[J]. Microbiology,2007, 153(10):3314.
[54]  Jeong K W,Lee J Y,Kang D I,et al. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis[J]. Nat Prod,2009, 72(4):719.
[55]  Gordon N C,Wareham D W. Antimicrobial activity of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against clinical isolates of Stenotrophomonas maltophilia[J]. Int J Antimicrob Agents,2010,36(2):129.
[56]  Li B H,Hang R,Du Y T,et al. Inactivation mechanism of the ketoacyl- reductase of bacterial type-II fatty acid synthase by epigallocatechin gallate[J]. Biochem Cell Biol,2006,84 (5):755.
[57]  Lechner D,Gibbons S,Bucar F. Modulation of isoniazid susceptibility by flavonoids in Mycobacterium[J]. Phytochem Lett,2008,1:71.
[58]  Chang P C,Li H Y,Tang H J,et al. In vitro synergy of baicalein and gentamicin against vancomycin-resistant Enterococcus[J]. J Microbiol Immunol Infect,2007,40(1):56.
[59]  Lee Y S,Kang O H,Choi J G,et al. Synergistic effects of the combination of galangin with gentamicin against methicillin-resistant Staphylococcus aureus[J]. J Microbiol,2008,46(3):283.
[60]  Stapleton P D,Shah S,Anderson J C,et al. Modulation of β-lactam resistance in Staphylococcus aureus by catechins and gallates[J]. Int J Antimicrob Agents,2004,23(5):462.
[61]  农朝赞,叶海洪,王丽,等.黄酮类化合物与大环内酯类抗生素的协同抑菌作用机制[J].中国医院药学杂志,2011, 31(9): 750.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133