Wang D, Wang X, Li X, et al. Preparation and characterization of solid lipid nanoparticles loaded with alpha-Asarone[J]. PDA J Pharm Sci Technol, 2008, 62(1): 56.
Hu L, Xing Q, Meng J, et al. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles[J]. AAPS Pharm Sci Tech, 2010, 11(2): 582.
[11]
Hao J, Wang F, Wang X, et al. Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design[J]. Eur J Pharm Sci, 2012, 47(2): 497.
[12]
Kocbek P, Baumgartner P, Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs[J]. Int J Pharm, 2006, 312(1/2): 179.
[13]
Muller R H, Katrin P. Nanosuspensions for the formulation of poorly soluble drugs I. Preparation by a size-reduction technique[J]. Int J Pharm, 1998, 160(1/2): 229.
Wang Y, Zhang D, Liu Z, et al. In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery[J]. Nanotechnology, 2010, 21(15): 155104.
[17]
She Zuo-Yan, Ke Xue, Ping Qi-Neng, et al. Preparation of breviscapine nanosuspension and its pharmacokinetic behavior in rats[J]. Chin J Nat Med, 2007, 15 (11): 50.
[18]
Gao Y, Wang C, Sun M, et al. In vivo evaluation of curcumin loaded nanosuspensions by oral administration[J]. J Biomed Nanotechnol, 2012, 8(4): 659.
Charman S A, Charman W N, Rogge M C, et al. Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound[J]. Pharm Res, 1992, 9(1): 87.
[24]
Gao P, Morozowich W. Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs[J]. Expert Opin Drug Deliv, 2006, 3(1): 97.
Qi J, Zhuang J, Wu W, et al. Enhanced effect and mechanism of water-in-oil microemulsion as an oral delivery system of hydroxysafflor yellow A[J]. Int J Nanomed, 2011, 6: 985.
Lu J L, Wang J C, Zhao S X, et al. Self-microemulsifying drug delivery system (SMEDDS) improves anticancer effect of oral 9-nitrocamptothecin on human cancer xenografts in nude mice[J]. Eur J Pharm Biopharm, 2008, 69(3): 899.
[37]
Wu X, Xu J, Huang X, et al. Self-microemulsifying drug delivery system improves curcumin dissolution and bioavailability[J]. Drug Dev Ind Pharm, 2011, 37(1): 15.
[38]
Mezghrani O, Ke X, Bourkaib N, et al. Optimized self-microemulsifying drug delivery systems(SMEDDS) for enhanced oral bioavailability of astilbin[J]. Pharmazie, 2011, 66(10): 754.
Zhi-Qiang Chen, Ying Liu, Ji-Hui Zhao, et al. Improved oral bioavailability of poorly water-soluble indirubin by a supersaturatable self-microemulsifying drug delivery system[J]. Int J Nanomed, 2012, 7: 1115.
Sun Y, Zhao Y. Enhanced pharmacokinetics and anti-tumor efficacy of PEGylated liposomal rhaponticin and plasma protein binding ability of rhaponticin[J]. J Nanosci Nanotechnol, 2012, 12(10): 7677.
[57]
Chen H, Wu J, Sun M, et al. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin[J]. J Liposome Res, 2012, 22(2): 100.
Yan-yu X, Yun-mei S, Zhi-peng C, et al. Preparation of silymarin proliposome: a new way to increase oral bioavailability of silymarin in beagle dogs[J]. Int J Pharm, 2006, 319(1/2): 162.
[61]
Chu C, Tong S S, Xu Y, et al. Proliposomes for oral delivery of dehydrosilymarin: preparation and evaluation in vitro and in vivo[J]. Acta Pharmacol Sin, 2011, 32(7): 973.
Kwon S H, Kim S Y, Ha K W, et al. Pharmaceutical evaluation of genistein-loaded pluronic micelles for oral delivery[J]. Arch Pharm Res, 2007, 30(9): 1138.
Kim S, Kim J Y, Huh K M, et al. Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel[J]. J Controlled Release, 2008, 132(3): 222.
[67]
Dahmani F Z, Yang H, Zhou J, et al. Enhanced oral bioavailability of paclitaxel in pluronic/LHR mixed polymeric micelles: preparation, in vitro and in vivo evaluation[J]. Eur J Pharm Sci, 2012, 47(1): 179.