全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黄酮类化合物肠道细菌生物转化的研究进展

Keywords: 黄酮,肠道细菌,生物转化,反应类型,影响因素

Full-Text   Cite this paper   Add to My Lib

Abstract:

黄酮类化合物是一类在自然界分布广泛的天然产物,具有多方面的生物活性.黄酮类化合物在肠道细菌的作用下发生降解,进而影响其在体内的生物利用度.肠道细菌对黄酮类化合物的代谢研究能为筛选黄酮生物转化相关菌、阐明黄酮体内代谢过程提供依据.以黄酮类化合物为先导化合物,肠道细菌通过结构修饰可以产生高效、高生物利用度和吸收性良好的化合物,为新药研发、药物剂型选择和药物生产奠定基础.该文归纳总结了肠道细菌对黄酮类化合物生物转化的主要反应类型与影响因素,供生物转化研究借鉴.

References

[1]  Rathee P, Chaudhary H, Rathee S, et al. Mechanism of action of flavonoids as anti-inflammatory agents: a review[J]. Inflamm Allergy Drug Targets,2009,8(3):229.
[2]  Wang Z, Elizabeth K, Brian J. B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341): 57.
[3]  王瑞君.人体的胃肠道微生态系统和微生态失衡[J].渝西学院学报,2005,4(4): 39.
[4]  杭汉强,陈香花.肠道微生物与黄酮类化合物的生物转化[J].中国现代实用医学杂志,2006,5(3): 30.
[5]  Zhang C, Zhang M, Pang X, et al. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations[J]. ISME J,2012,6(10):1848.
[6]  Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome[J]. Nature, 2011,473(7346):174.
[7]  Claesson M J, Jeffery I B, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly[J]. Nature,2012,488(7410):178.
[8]  Schneider H, Blaut M. Anaerobic degradation of flavonoids by Eubacterium ramulus[J]. Arch Microbiol,2000,173(1):71.
[9]  Schoefer L, Mohan R, Schwiertz A, et al. Anaerobic degradation of flavonoids by Clostridium orbiscindens[J]. Appl Environ Microbiol,2003,69(10):5849.
[10]  Braune A, Blaut M. Intestinal bacterium Eubacterium cellulosolvens deglycosylates flavonoid C-and O-glucosides[J]. Appl Environ Microbiol,2012,78(22):8151.
[11]  于飞,王世英,李佳,等.兼性肠球菌Enterococcus hirae AUH-HM195对黄豆苷原的开环转化[J].微生物学报,2009,49(4):479.
[12]  Kim D H, Jung E A, Sohng I S, et al. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities[J]. Arch Pharm Res,1998,21(1):17.
[13]  Jin J S, Nishihata T, Kakiuchi N, et al. Biotransformation of C-glucosylisoflavone puerarin to estrogenic (3S)-equol in co-culture of two human intestinal bacteria[J]. Biol Pharm Bull,2008, 31(8): 1621.
[14]  Nakamura K, Nishihata T, Jin J S, et al. The C-glucosyl bond of puerarin was cleaved hydrolytically by a human intestinal bacterium strain PUE to yield its aglycone daidzein and an intact glucose[J]. Chem Pharm Bull,2011,59(1): 23.
[15]  黄慧学,谭珍媛,邓家刚,等. 人肠道菌群对芒果苷体外代谢转化的研究[J]. 中国中药杂志,2011,36(4),443.
[16]  Hur H G, Lay J O Jr, Beger R D, et al. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin[J]. Arch Microbiol,2000,174(6):422.
[17]  Blaut M, Schoefer L, Braune A. Transformation of flavonoids by intestinal microorganisms[J]. Int J Vitam Nutr Res,2003,73(2):79.
[18]  Schoefer L, Braune A, Blaut M. Cloning and expression of a phloretin hydrolase gene from Eubacterium ramulus and characterization of the recombinant enzyme[J]. Appl Environ Microbiol,2004,70(10):6131.
[19]  Tsuji H, Moriyama K, Nomoto K, et al. Isolation and characterization of the equol-producing bacterium Slackia sp. strain NATTS[J]. Arch Microbiol,2010,192(4):279.
[20]  Tsuji H, Moriyama K, Nomoto K, et al. Identification of an enzyme system for daidzein-to-equol conversion in Slackia sp. strain NATTS[J]. Appl Environ Microbiol,2012,78(4): 1228.
[21]  Kutschera M, Engst W, Blaut M,et al. Isolation of catechin-converting human intestinal bacteria[J]. J Appl Microbiol,2011,111(1):165.
[22]  Jin J S, Hattori M. Isolation and characterization of a human intestinal bacterium Eggerthella sp. CAT-1 capable of cleaving the C-ring of (+)-catechin and (-)-epicatechin, followed by p-dehydroxylation of the B-ring[J]. Biol Pharm Bull,2012;35(12):2252.
[23]  Meselhy M R, Nakamura N, Hattori M. Biotransformation of (-)-epicatechin 3-O-gallate by human intestinal bacteria[J]. Chem Pharm Bull,1997,45(5):888.
[24]  Muoz Y, Garrido A, Valladares L. Equol is more active than soy isoflavone itself to compete for binding to thromboxane A(2) receptor in human platelets[J]. Thromb Res,2009,123(5):740.
[25]  左风,周钟鸣,熊玉兰,等.黄芩汤及其肠道菌群的代谢产物对D-半乳糖胺诱导的肝损伤的保护作用的比较研究[J].中国中药杂志,2003,28(9):842.
[26]  董庆洁,邵仕香,葛卿,等. 微波辅助萃取槐米中芦丁工艺条件的探讨[J]. 中草药,2006:7(10):1510.
[27]  Martin B. Antibiotic overuse: stop the killing of beneficial bacteria[J]. Nature, 2011, 476(7361): 393.
[28]  Duda-Chodak A. The inhibitory effect of polyphenols on human gut microbiota[J]. J Physiol Pharmacol,2012,63(5):497.
[29]  张逊,姚文,朱伟云.肠道大豆异黄酮降解茵研究进展[J].世界华人消化杂志,2006,14(10):973.
[30]  杨秀伟,徐嵬.中药化学成分的人肠内细菌生物转化模型和标准操作规程的建立[J].中国中药杂志,2011,36(1):19.
[31]  李富超,周婕,秦松.元基因组用于未培养微生物的研究[J].海洋科学,2010,34(5):79.
[32]  Grassi D, Desideri G, Croce G, et al. Flavonoids, vascular function and cardiovascular protection[J]. Curr Pharm Des,2009,15(10):1072.
[33]  Setchell K D, Brown N M, Lydeking-Olsen E. The clinical importance of the metabolite equol——a clue to the effectiveness of soy and its isoflavones[J]. J Nutr,2002,132(12):3577.
[34]  Lee Y H, Kwak J, Choi H K, et al. EGCG suppresses prostate cancer cell growth modulating acetylation of androgen receptor by anti-histone acetyltransferase activity[J]. Int J Mol Med,2012,30(1):69.
[35]  杨静,钱大玮,段金廒,等.肠道细菌对中药成分代谢的研究进展[J].中草药,2011,42(11):2335.
[36]  Ley R E, Peterson D A, Gordon J I. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124(4):837.
[37]  Qin J, Li R, Arumugam M, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59.
[38]  Tamura M, Tsushida T, Shinohara K. Isolation of an isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40, from human faeces[J]. Anaerobe,2007,13(1):32.
[39]  Hur H G, Beger R D, Heinze T M,et al. Isolation of an anaerobic intestinal bacterium capable of cleaving the C-ring of the isoflavonoid daidzein[J]. Arch Microbiol,2002,178(1):8.
[40]  Wang X L, Hur H G, Lee J H, et al. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic huaman intestinal bacterium[J]. Appl Environ Microbiol,2005,71(1):214.
[41]  Yang J, Qian D, Jiang S, et al. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2012,898:95.
[42]  Knaup B, Kahle K, Erk T, et al. Human intestinal hydrolysis of phenol glycosides:a study with quercetin and p-nitrophenol glycosides using ileostomy fluid[J]. Mol Nutr Food Res,2007,51(11):1423.
[43]  Rafii F, Davis C, Park M, et al. Variations in metabolism of the soy isoflavonoid daidzein by human intestinal microfloras from different individuals[J]. Arch Microbiol,2003,180(1):11.
[44]  Atkinson C, Frankenfeld C L, Lampe J W. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health[J]. Exp Biol Med,2005,230(3):155.
[45]  张利平,程克棣,朱平.紫杉烷类化合物的生物转化[J].药学学报,2004,39(2):153.
[46]  Hein E M, Rose K, van\'t Slot G, et al. Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by fluorescence in situ hybridization (FISH)[J]. J Agric Food Chem,2008,56(6):2281.
[47]  Lin Y T, Hsiu S L, Hou Y C, et al. Degradation of flavonoid aglycones by rabbit, rat and human fecal flora[J]. Biol Pharm Bull, 2003, 26(5): 747.
[48]  Simons A L, Renouf M, Murphy P A, et al. Greater apparent absorption of flavonoids is associated with lesser human fecal flavonoid disappearance rates[J]. J Agric Food Chem,2010,58(1):141.
[49]  Wang L Q, Meselhy M R, Li Y, et al. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium[J]. Chem Pharm Bull,2001,49(12):1640.
[50]  蔡莉,王培玉,张玉梅.雌马酚产出相关细菌研究进展[J].世界华人消化杂志,2010,18(13): 1360.
[51]  李咏梅,李晓眠,朱泽.苷类中药肠道细菌生物转化的研究进展[J].世界华人消化杂志,2008,16(19):2144.
[52]  王芸,孙雪宁,李天宇.我国儿童抗生素滥用现状及改革对策研究[J].齐鲁药事,2009,28(6): 370.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133