Rathee P, Chaudhary H, Rathee S, et al. Mechanism of action of flavonoids as anti-inflammatory agents: a review[J]. Inflamm Allergy Drug Targets,2009,8(3):229.
[2]
Wang Z, Elizabeth K, Brian J. B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341): 57.
Zhang C, Zhang M, Pang X, et al. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations[J]. ISME J,2012,6(10):1848.
[6]
Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome[J]. Nature, 2011,473(7346):174.
[7]
Claesson M J, Jeffery I B, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly[J]. Nature,2012,488(7410):178.
[8]
Schneider H, Blaut M. Anaerobic degradation of flavonoids by Eubacterium ramulus[J]. Arch Microbiol,2000,173(1):71.
[9]
Schoefer L, Mohan R, Schwiertz A, et al. Anaerobic degradation of flavonoids by Clostridium orbiscindens[J]. Appl Environ Microbiol,2003,69(10):5849.
[10]
Braune A, Blaut M. Intestinal bacterium Eubacterium cellulosolvens deglycosylates flavonoid C-and O-glucosides[J]. Appl Environ Microbiol,2012,78(22):8151.
Kim D H, Jung E A, Sohng I S, et al. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities[J]. Arch Pharm Res,1998,21(1):17.
[13]
Jin J S, Nishihata T, Kakiuchi N, et al. Biotransformation of C-glucosylisoflavone puerarin to estrogenic (3S)-equol in co-culture of two human intestinal bacteria[J]. Biol Pharm Bull,2008, 31(8): 1621.
[14]
Nakamura K, Nishihata T, Jin J S, et al. The C-glucosyl bond of puerarin was cleaved hydrolytically by a human intestinal bacterium strain PUE to yield its aglycone daidzein and an intact glucose[J]. Chem Pharm Bull,2011,59(1): 23.
Hur H G, Lay J O Jr, Beger R D, et al. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin[J]. Arch Microbiol,2000,174(6):422.
[17]
Blaut M, Schoefer L, Braune A. Transformation of flavonoids by intestinal microorganisms[J]. Int J Vitam Nutr Res,2003,73(2):79.
[18]
Schoefer L, Braune A, Blaut M. Cloning and expression of a phloretin hydrolase gene from Eubacterium ramulus and characterization of the recombinant enzyme[J]. Appl Environ Microbiol,2004,70(10):6131.
[19]
Tsuji H, Moriyama K, Nomoto K, et al. Isolation and characterization of the equol-producing bacterium Slackia sp. strain NATTS[J]. Arch Microbiol,2010,192(4):279.
[20]
Tsuji H, Moriyama K, Nomoto K, et al. Identification of an enzyme system for daidzein-to-equol conversion in Slackia sp. strain NATTS[J]. Appl Environ Microbiol,2012,78(4): 1228.
[21]
Kutschera M, Engst W, Blaut M,et al. Isolation of catechin-converting human intestinal bacteria[J]. J Appl Microbiol,2011,111(1):165.
[22]
Jin J S, Hattori M. Isolation and characterization of a human intestinal bacterium Eggerthella sp. CAT-1 capable of cleaving the C-ring of (+)-catechin and (-)-epicatechin, followed by p-dehydroxylation of the B-ring[J]. Biol Pharm Bull,2012;35(12):2252.
[23]
Meselhy M R, Nakamura N, Hattori M. Biotransformation of (-)-epicatechin 3-O-gallate by human intestinal bacteria[J]. Chem Pharm Bull,1997,45(5):888.
[24]
Muoz Y, Garrido A, Valladares L. Equol is more active than soy isoflavone itself to compete for binding to thromboxane A(2) receptor in human platelets[J]. Thromb Res,2009,123(5):740.
Grassi D, Desideri G, Croce G, et al. Flavonoids, vascular function and cardiovascular protection[J]. Curr Pharm Des,2009,15(10):1072.
[33]
Setchell K D, Brown N M, Lydeking-Olsen E. The clinical importance of the metabolite equol——a clue to the effectiveness of soy and its isoflavones[J]. J Nutr,2002,132(12):3577.
[34]
Lee Y H, Kwak J, Choi H K, et al. EGCG suppresses prostate cancer cell growth modulating acetylation of androgen receptor by anti-histone acetyltransferase activity[J]. Int J Mol Med,2012,30(1):69.
Ley R E, Peterson D A, Gordon J I. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124(4):837.
[37]
Qin J, Li R, Arumugam M, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59.
[38]
Tamura M, Tsushida T, Shinohara K. Isolation of an isoflavone-metabolizing, Clostridium-like bacterium, strain TM-40, from human faeces[J]. Anaerobe,2007,13(1):32.
[39]
Hur H G, Beger R D, Heinze T M,et al. Isolation of an anaerobic intestinal bacterium capable of cleaving the C-ring of the isoflavonoid daidzein[J]. Arch Microbiol,2002,178(1):8.
[40]
Wang X L, Hur H G, Lee J H, et al. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic huaman intestinal bacterium[J]. Appl Environ Microbiol,2005,71(1):214.
[41]
Yang J, Qian D, Jiang S, et al. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2012,898:95.
[42]
Knaup B, Kahle K, Erk T, et al. Human intestinal hydrolysis of phenol glycosides:a study with quercetin and p-nitrophenol glycosides using ileostomy fluid[J]. Mol Nutr Food Res,2007,51(11):1423.
[43]
Rafii F, Davis C, Park M, et al. Variations in metabolism of the soy isoflavonoid daidzein by human intestinal microfloras from different individuals[J]. Arch Microbiol,2003,180(1):11.
[44]
Atkinson C, Frankenfeld C L, Lampe J W. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health[J]. Exp Biol Med,2005,230(3):155.
[45]
张利平,程克棣,朱平.紫杉烷类化合物的生物转化[J].药学学报,2004,39(2):153.
[46]
Hein E M, Rose K, van\'t Slot G, et al. Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by fluorescence in situ hybridization (FISH)[J]. J Agric Food Chem,2008,56(6):2281.
[47]
Lin Y T, Hsiu S L, Hou Y C, et al. Degradation of flavonoid aglycones by rabbit, rat and human fecal flora[J]. Biol Pharm Bull, 2003, 26(5): 747.
[48]
Simons A L, Renouf M, Murphy P A, et al. Greater apparent absorption of flavonoids is associated with lesser human fecal flavonoid disappearance rates[J]. J Agric Food Chem,2010,58(1):141.
[49]
Wang L Q, Meselhy M R, Li Y, et al. The heterocyclic ring fission and dehydroxylation of catechins and related compounds by Eubacterium sp. strain SDG-2, a human intestinal bacterium[J]. Chem Pharm Bull,2001,49(12):1640.