Lee M H, Kwon B J, Seo H J, et al. Resveratrol inhibits phenotype modulation by platelet derived growth factor-bb in rat aortic smooth muscle cells[J]. Oxid Med Cell Longev, 2014:572430.
Brown A, Reynolds L R, Bruemmer D. Intensive glycemic control and cardiovascular disease:an update[J]. Nat Rev Cardiol, 2010, 7(7):369.
[12]
Porter K E, Riches K. The vascular smooth muscle cell:a therapeutic target in Type 2 diabetes[J]. Clin Sci, 2013, 125(4):167.
[13]
Hadi H A, Suwaidi J A. Endothelial dysfunction in diabetes mellitus[J]. Vasc Health Risk Manag, 2007, 3(6):853.
[14]
Rask-Madsen C, King G L. Mechanisms of disease:endothelial dysfunction in insulin resistance and diabetes[J]. Nat Clin Pract Endocrinol Metab, 2007, 3(1):46.
[15]
Owens G K, Kumar M S, Wamhoff B R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease[J]. Physiol Rev, 2004, 84(3):767.
[16]
Wang D, Chang P S, Wang Z, et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor[J]. Cell, 2001, 105(7):851.
[17]
Li S, Wang D Z, Wang Z, et al. The serum response factor coactivator myocardin is required for vascular smooth muscle development[J]. Proc Natl Acad Sci USA, 2003, 100(16):9366.
[18]
Wang Z, Wang D Z, Pipes G C T, et al. Myocardin is a master regulator of smooth muscle gene expression[J]. Proc Natl Acad Sci USA, 2003, 100(12):7129.
[19]
Blaker A L, Taylor J M, Mack C P. PKA-dependent phosphorylation of serum response factor inhibits smooth muscle-specific gene expression[J]. Arterioscler Thromb Vasc Biol, 2009, 29(12):2153.
[20]
Cao D, Wang C, Tang R, et al. Acetylation of myocardin is required for the activation of cardiac and smooth muscle genes[J]. J Biol Chem, 2012, 287(46):38495.
[21]
Mack C P. Signaling mechanisms that regulate smooth muscle cell differentiation[J]. Arterioscler Thromb Vasc Biol, 2011, 31(7):1495.
[22]
Yin L, Sinha S, McDonald O G. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression[J]. J Biol Chem, 2004, 280(10):9719.
[23]
Hu G, Wang X, Saunders D N, et al. Modulation of myocardin function by the ubiquitin E3 ligase UBR5[J]. J Biol Chem, 2010, 285(16):11800.
[24]
Xie P, Fan Y, Zhang H, et al. CHIP represses myocardin-induced smooth muscle cell differentiation via ubiquitin-mediated proteasomal degradation[J]. Mol Cell Biol, 2009, 29(9):2398.
[25]
Pepe A E, Xiao Q, Zampetaki A, et al. Crucial role of nrf3 in smooth muscle cell differentiation from stem cells[J]. Circ Res, 2010, 106(5):870.
[26]
Martin E, Caubit X, Airik R, et al. TSHZ3 and SOX9 regulate the timing of smooth muscle cell differentiation in the ureter by reducing myocardin activity[J]. PLoS ONE, 2013, 8(5):e63721.
[27]
Zhou J, Blue E K, Hu G, et al. Thymine DNA glycosylase represses myocardin-induced smooth muscle cell differentiation by competing with serum response factor for myocardin binding[J]. J Biol Chem, 2008, 283(51):35383.
[28]
Tanaka T, Sato H, Doi H, et al. Runx2 represses myocardin-mediated differentiation and facilitates osteogenic conversion of vascular smooth muscle cells[J]. Mol Cell Biol, 2008, 28(3):1147.
[29]
Hoggatt A M, Kim J R, Ustiyan V, et al. The transcription factor Foxf1 binds to serum response factor and myocardin to regulate gene transcription in visceral smooth muscle cells[J]. J Biol Chem, 2013, 288(40):28477.
[30]
Long X, Cowan S L, Miano J M. Mitogen-activated protein kinase 14 is a novel negative regulatory switch for the vascular smooth muscle cell contractile gene program[J]. Arterioscler Thromb Vasc Biol, 2013, 33(2):378.
[31]
Wang S S, Huang H Y, Chen S Z, et al. Early growth response 2 (Egr2) plays opposing roles in committing C3H10T1/2 stem cells to adipocytes and smooth muscle-like cells[J]. Int J Biochem Cell Biol, 2013, 45(8):1825.
[32]
Lagna G, Ku M M, Nguyen P H, et al. Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors[J]. J Biol Chem, 2007, 282(51):37244.
[33]
Kang H, Hata A. MicroRNA regulation of smooth muscle gene expression and phenotype[J]. Curr Opin Hematol, 2012, 19(3):224.
[34]
Xie C, Huang H, Sun X, et al. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4[J]. Stem Cells Dev, 2011, 20(2):205.
[35]
Huang H, Xie C, Sun X, et al. miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation[J]. J Biol Chem, 2010, 285(13):9383.
[36]
Davis B N, Hilyard A C, Lagna G, et al. SMAD proteins control DROSHA-mediated microRNA maturation[J]. Nature, 2008, 454(7200):56.
[37]
Torella D, Iaconetti C, Catalucci D, et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo[J]. Circ Res, 2011, 109(8):880.
[38]
Rangrez A Y, Massy Z A, Metzinger-Le Meuth V, et al. miR-143 and miR-145:molecular keys to switch the phenotype of vascular smooth muscle cells[J]. Circ Cardiovasc Genet, 2011, 4(2):197.
[39]
Courboulin A, Paulin R, Giguere N J, et al. Role for miR-204 in human pulmonary arterial hypertension[J]. J Exp Med, 2011, 208(3):535.
[40]
Chan M C, Hilyard A C, Wu C, et al. Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression[J]. Embo J, 2010, 29(3):559.
[41]
Leeper N J, Raiesdana A, Kojima Y, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function[J]. J Cell Physiol, 2011, 226(4):1035.
[42]
Liu X, Cheng Y, Chen X, et al. MicroRNA-31 regulated by the extracellular regulated kinase is involved in vascular smooth muscle cell growth via large tumor suppressor homolog 2[J]. J Biol Chem, 2011, 286(49):42371.
[43]
Sun S G, Zheng B, Han M, et al. miR-146a and Kruppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation[J]. EMBO Rep, 2011, 12(1):56.
[44]
Zhang Y, Wang Y, Wang X, et al. Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21[J]. J Hypertens, 2011, 29(8):1560.
[45]
Davis B N, Hilyard A C, Nguyen P H, et al. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype[J]. J Biol Chem, 2009, 284(6):3728.
[46]
Rodriguez-Vita J, Sanchez-Galan E, Santamaria B, et al. Essential role of TGF-beta/Smad pathway on statin dependent vascular smooth muscle cell regulation[J]. PLoS ONE, 2008, 3(12):e3959.
[47]
Pagiatakis C, Gordon J W, Ehyai S, et al. A novel RhoA/ROCK-CPI-17-MEF2C signaling pathway regulates vascular smooth muscle cell gene expression[J]. J Biol Chem, 2012, 287(11):8361.
[48]
Liu Z P, Wang Z, Yanagisawa H, et al. Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin[J]. Dev Cell, 2005, 9(2):261.
[49]
Wang Z, Wang D Z, Hockemeyer D, et al. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression[J]. Nature, 2004, 428(6979):185.
[50]
Kirchmer M N, Franco A, Albasanz-Puig A, et al. Modulation of vascular smooth muscle cell phenotype by STAT-1 and STAT-3[J]. Atherosclerosis, 2014, 234(1):169.
[51]
Faries P L, Rohan D I, Takahara H, et al. Human vascular smooth muscle cells of diabetic origin exhibit increased proliferation, adhesion, and migration[J]. J Vasc Surg, 2001, 33(3):601.
[52]
Madi H A, Riches K, Warburton P, et al. Inherent differences in morphology, proliferation, and migration in saphenous vein smooth muscle cells cultured from nondiabetic and Type 2 diabetic patients[J]. Am J Physiol Cell Physiol, 2009, 297(5):C1307.
[53]
Etienne P, Pares-Herbute N, Mani-Ponset L, et al. Phenotype modulation in primary cultures of aortic smooth muscle cells from streptozotocin-diabetic rats[J]. Differentiation, 1998, 63(4):225.
[54]
Pandolfi A, Grilli A, Cilli C, et al. Phenotype modulation in cultures of vascular smooth muscle cells from diabetic rats:association with increased nitric oxide synthase expression and superoxide anion generation[J]. J Cell Physiol, 2003, 196(2):378.
Chen N X, Duan D, O\'Neill K D, et al. High glucose increases the expression of Cbfa1 and BMP-2 and enhances the calcification of vascular smooth muscle cells[J]. Nephrol Dial Transplant, 2006, 21(12):3435.
[57]
Sinha A, Vyavahare N R. High-glucose levels and elastin degradation products accelerate osteogenesis in vascular smooth muscle cells[J]. Diab Vasc Dis Res, 2013, 10(5):410.
[58]
Wang C C, Gurevich I, Draznin B. Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways[J]. Diabetes, 2003, 52(10):2562.
[59]
Hayashi K, Saga H, Chimori Y, et al. Differentiated phenotype of smooth muscle cells depends on signaling pathways through insulin-like growth factors and phosphatidylinositol 3-kinase[J]. J Biol Chem, 1998, 273(44):28860.
[60]
Takenaka K, Yamagishi S, Matsui T, et al. Role of advanced glycation end products (AGEs) in thrombogenic abnormalities in diabetes[J]. Curr Neurovasc Res, 2006, 3(1):73.
[61]
Suga T, Iso T, Shimizu T, et al. Activation of receptor for advanced glycation end products induces osteogenic differentiation of vascular smooth muscle cells[J]. J Atheroscler Thromb, 2011, 18(8):670.