全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

糖尿病中血管平滑肌细胞表型转化机制及中医药干预

Keywords: 糖尿病,血管平滑肌细胞,表型转化,血管并发症,中药

Full-Text   Cite this paper   Add to My Lib

Abstract:

血管平滑肌细胞(vascularsmoothmusclecells,VSMC)的增殖和迁移是动脉粥样硬化斑块形成、高血压等糖尿病血管并发症的共同病理特征,而VSMC表型转化是VSMC增殖和迁移的基础,因此研究糖尿病中VSMC表型调节及机制,对防治糖尿病血管并发症具有重要意义。该文拟介绍VSMC表型转化机制及糖尿病中VSMC表型的改变,并综述中药复方及单体干预VSMC表型转化的研究进展,为糖尿病血管并发症的中医药防治提供参考。

References

[1]  Xu Y, Wang L, He J, et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013, 310(9):948.
[2]  王旭开, 王燕, 何作云, 等.胰岛素对大鼠血管平滑肌细胞表型转化的影响[J].第二军医大学学报, 2003, 24(10):1090.
[3]  傅春江, 何作云, 王旭开, 等.胰岛素对SHR血管平滑肌细胞增殖和表型转化的MAPK机制的研究[J].重庆医学, 2008, 37(6):569571.
[4]  Huang S, Chen P, Shui X, et al. Baicalin attenuates transforming growth factor-beta1-induced human pulmonary artery smooth muscle cell proliferation and phenotypic switch by inhibiting hypoxia inducible factor-1alpha and aryl hydrocarbon receptor expression[J]. J Pharm Pharmacol, 2014.
[5]  王会玲, 胡婉英.中药双龙丸对动脉粥样硬化模型增殖动力学和病理学的影响[J].中药药理与临床, 1999, 15(4):34.
[6]  王凤荣, 刘彤, 郑娴, 等.大柴胡汤对高脂饮食所致兔动脉粥样硬化的保护作用[J].中西医结合心脑血管病杂志, 2007, 5(1):36.
[7]  王华亭, 蔡生业, 姚成芳, 等.复方花刺参粘多糖对家兔血管成形术后内皮功能及超微结构的影响[J].中国动脉硬化杂志, 2004, 12(5):497.
[8]  谢梅林, 顾振纶, 陈可翼, 等.消瘀片消退兔腹主动脉粥样斑块作用的研究[J].中国老年学杂志, 2000, 2(6):359.
[9]  Lee M H, Kwon B J, Seo H J, et al. Resveratrol inhibits phenotype modulation by platelet derived growth factor-bb in rat aortic smooth muscle cells[J]. Oxid Med Cell Longev, 2014:572430.
[10]  钱明, 刘长青, 林赛玲, 等.大豆异黄酮对大鼠血管平滑肌细胞增殖和表型转化的影响[J].细胞与分子免疫学杂志, 2011, 27(11):1256.
[11]  Brown A, Reynolds L R, Bruemmer D. Intensive glycemic control and cardiovascular disease:an update[J]. Nat Rev Cardiol, 2010, 7(7):369.
[12]  Porter K E, Riches K. The vascular smooth muscle cell:a therapeutic target in Type 2 diabetes[J]. Clin Sci, 2013, 125(4):167.
[13]  Hadi H A, Suwaidi J A. Endothelial dysfunction in diabetes mellitus[J]. Vasc Health Risk Manag, 2007, 3(6):853.
[14]  Rask-Madsen C, King G L. Mechanisms of disease:endothelial dysfunction in insulin resistance and diabetes[J]. Nat Clin Pract Endocrinol Metab, 2007, 3(1):46.
[15]  Owens G K, Kumar M S, Wamhoff B R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease[J]. Physiol Rev, 2004, 84(3):767.
[16]  Wang D, Chang P S, Wang Z, et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor[J]. Cell, 2001, 105(7):851.
[17]  Li S, Wang D Z, Wang Z, et al. The serum response factor coactivator myocardin is required for vascular smooth muscle development[J]. Proc Natl Acad Sci USA, 2003, 100(16):9366.
[18]  Wang Z, Wang D Z, Pipes G C T, et al. Myocardin is a master regulator of smooth muscle gene expression[J]. Proc Natl Acad Sci USA, 2003, 100(12):7129.
[19]  Blaker A L, Taylor J M, Mack C P. PKA-dependent phosphorylation of serum response factor inhibits smooth muscle-specific gene expression[J]. Arterioscler Thromb Vasc Biol, 2009, 29(12):2153.
[20]  Cao D, Wang C, Tang R, et al. Acetylation of myocardin is required for the activation of cardiac and smooth muscle genes[J]. J Biol Chem, 2012, 287(46):38495.
[21]  Mack C P. Signaling mechanisms that regulate smooth muscle cell differentiation[J]. Arterioscler Thromb Vasc Biol, 2011, 31(7):1495.
[22]  Yin L, Sinha S, McDonald O G. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression[J]. J Biol Chem, 2004, 280(10):9719.
[23]  Hu G, Wang X, Saunders D N, et al. Modulation of myocardin function by the ubiquitin E3 ligase UBR5[J]. J Biol Chem, 2010, 285(16):11800.
[24]  Xie P, Fan Y, Zhang H, et al. CHIP represses myocardin-induced smooth muscle cell differentiation via ubiquitin-mediated proteasomal degradation[J]. Mol Cell Biol, 2009, 29(9):2398.
[25]  Pepe A E, Xiao Q, Zampetaki A, et al. Crucial role of nrf3 in smooth muscle cell differentiation from stem cells[J]. Circ Res, 2010, 106(5):870.
[26]  Martin E, Caubit X, Airik R, et al. TSHZ3 and SOX9 regulate the timing of smooth muscle cell differentiation in the ureter by reducing myocardin activity[J]. PLoS ONE, 2013, 8(5):e63721.
[27]  Zhou J, Blue E K, Hu G, et al. Thymine DNA glycosylase represses myocardin-induced smooth muscle cell differentiation by competing with serum response factor for myocardin binding[J]. J Biol Chem, 2008, 283(51):35383.
[28]  Tanaka T, Sato H, Doi H, et al. Runx2 represses myocardin-mediated differentiation and facilitates osteogenic conversion of vascular smooth muscle cells[J]. Mol Cell Biol, 2008, 28(3):1147.
[29]  Hoggatt A M, Kim J R, Ustiyan V, et al. The transcription factor Foxf1 binds to serum response factor and myocardin to regulate gene transcription in visceral smooth muscle cells[J]. J Biol Chem, 2013, 288(40):28477.
[30]  Long X, Cowan S L, Miano J M. Mitogen-activated protein kinase 14 is a novel negative regulatory switch for the vascular smooth muscle cell contractile gene program[J]. Arterioscler Thromb Vasc Biol, 2013, 33(2):378.
[31]  Wang S S, Huang H Y, Chen S Z, et al. Early growth response 2 (Egr2) plays opposing roles in committing C3H10T1/2 stem cells to adipocytes and smooth muscle-like cells[J]. Int J Biochem Cell Biol, 2013, 45(8):1825.
[32]  Lagna G, Ku M M, Nguyen P H, et al. Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors[J]. J Biol Chem, 2007, 282(51):37244.
[33]  Kang H, Hata A. MicroRNA regulation of smooth muscle gene expression and phenotype[J]. Curr Opin Hematol, 2012, 19(3):224.
[34]  Xie C, Huang H, Sun X, et al. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4[J]. Stem Cells Dev, 2011, 20(2):205.
[35]  Huang H, Xie C, Sun X, et al. miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation[J]. J Biol Chem, 2010, 285(13):9383.
[36]  Davis B N, Hilyard A C, Lagna G, et al. SMAD proteins control DROSHA-mediated microRNA maturation[J]. Nature, 2008, 454(7200):56.
[37]  Torella D, Iaconetti C, Catalucci D, et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo[J]. Circ Res, 2011, 109(8):880.
[38]  Rangrez A Y, Massy Z A, Metzinger-Le Meuth V, et al. miR-143 and miR-145:molecular keys to switch the phenotype of vascular smooth muscle cells[J]. Circ Cardiovasc Genet, 2011, 4(2):197.
[39]  Courboulin A, Paulin R, Giguere N J, et al. Role for miR-204 in human pulmonary arterial hypertension[J]. J Exp Med, 2011, 208(3):535.
[40]  Chan M C, Hilyard A C, Wu C, et al. Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression[J]. Embo J, 2010, 29(3):559.
[41]  Leeper N J, Raiesdana A, Kojima Y, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function[J]. J Cell Physiol, 2011, 226(4):1035.
[42]  Liu X, Cheng Y, Chen X, et al. MicroRNA-31 regulated by the extracellular regulated kinase is involved in vascular smooth muscle cell growth via large tumor suppressor homolog 2[J]. J Biol Chem, 2011, 286(49):42371.
[43]  Sun S G, Zheng B, Han M, et al. miR-146a and Kruppel-like factor 4 form a feedback loop to participate in vascular smooth muscle cell proliferation[J]. EMBO Rep, 2011, 12(1):56.
[44]  Zhang Y, Wang Y, Wang X, et al. Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21[J]. J Hypertens, 2011, 29(8):1560.
[45]  Davis B N, Hilyard A C, Nguyen P H, et al. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype[J]. J Biol Chem, 2009, 284(6):3728.
[46]  Rodriguez-Vita J, Sanchez-Galan E, Santamaria B, et al. Essential role of TGF-beta/Smad pathway on statin dependent vascular smooth muscle cell regulation[J]. PLoS ONE, 2008, 3(12):e3959.
[47]  Pagiatakis C, Gordon J W, Ehyai S, et al. A novel RhoA/ROCK-CPI-17-MEF2C signaling pathway regulates vascular smooth muscle cell gene expression[J]. J Biol Chem, 2012, 287(11):8361.
[48]  Liu Z P, Wang Z, Yanagisawa H, et al. Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin[J]. Dev Cell, 2005, 9(2):261.
[49]  Wang Z, Wang D Z, Hockemeyer D, et al. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression[J]. Nature, 2004, 428(6979):185.
[50]  Kirchmer M N, Franco A, Albasanz-Puig A, et al. Modulation of vascular smooth muscle cell phenotype by STAT-1 and STAT-3[J]. Atherosclerosis, 2014, 234(1):169.
[51]  Faries P L, Rohan D I, Takahara H, et al. Human vascular smooth muscle cells of diabetic origin exhibit increased proliferation, adhesion, and migration[J]. J Vasc Surg, 2001, 33(3):601.
[52]  Madi H A, Riches K, Warburton P, et al. Inherent differences in morphology, proliferation, and migration in saphenous vein smooth muscle cells cultured from nondiabetic and Type 2 diabetic patients[J]. Am J Physiol Cell Physiol, 2009, 297(5):C1307.
[53]  Etienne P, Pares-Herbute N, Mani-Ponset L, et al. Phenotype modulation in primary cultures of aortic smooth muscle cells from streptozotocin-diabetic rats[J]. Differentiation, 1998, 63(4):225.
[54]  Pandolfi A, Grilli A, Cilli C, et al. Phenotype modulation in cultures of vascular smooth muscle cells from diabetic rats:association with increased nitric oxide synthase expression and superoxide anion generation[J]. J Cell Physiol, 2003, 196(2):378.
[55]  张涛, 闻萍, 李秀真, 等.高糖诱导大鼠血管平滑肌细胞转分化的作用[J].肾脏病与透析肾移植杂志, 2009, 18(4):348.
[56]  Chen N X, Duan D, O\'Neill K D, et al. High glucose increases the expression of Cbfa1 and BMP-2 and enhances the calcification of vascular smooth muscle cells[J]. Nephrol Dial Transplant, 2006, 21(12):3435.
[57]  Sinha A, Vyavahare N R. High-glucose levels and elastin degradation products accelerate osteogenesis in vascular smooth muscle cells[J]. Diab Vasc Dis Res, 2013, 10(5):410.
[58]  Wang C C, Gurevich I, Draznin B. Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways[J]. Diabetes, 2003, 52(10):2562.
[59]  Hayashi K, Saga H, Chimori Y, et al. Differentiated phenotype of smooth muscle cells depends on signaling pathways through insulin-like growth factors and phosphatidylinositol 3-kinase[J]. J Biol Chem, 1998, 273(44):28860.
[60]  Takenaka K, Yamagishi S, Matsui T, et al. Role of advanced glycation end products (AGEs) in thrombogenic abnormalities in diabetes[J]. Curr Neurovasc Res, 2006, 3(1):73.
[61]  Suga T, Iso T, Shimizu T, et al. Activation of receptor for advanced glycation end products induces osteogenic differentiation of vascular smooth muscle cells[J]. J Atheroscler Thromb, 2011, 18(8):670.
[62]  刘超谭, 若芸殷, 长军, 等.晚期糖基化终末产物诱导大鼠主动脉平滑肌细胞转分化的研究[J].中华实验外科杂志, 2013, 30(5):905.
[63]  温进坤, 韩梅.益气活血法与血管平滑肌细胞基因表达调节[J].中西医结合学报, 2003, 1(1):12.
[64]  李琦, 温进坤, 韩梅.黄芪和当归对血管平滑肌细胞表型标志基因表达和细胞增殖的影响[J].中国动脉硬化杂志, 2004, 12(2):147.
[65]  李琦, 温进坤, 韩梅.黄芪、当归对血管内皮剥脱后内膜增生的影响及作用机制[J].中国老年学杂志, 2003, 23(11):758.
[66]  车贤达, Liang S X, Jiang X M, 等.麝香保心丸对血管平滑肌细胞表型转化的影响[J].中国病理生理杂志, 2010, 26(11):2149.
[67]  张新明, 张新平.粉防已碱对VSMC表型转化和p38及MKP-1表达的影响[J].实验室研究与探索, 2008, 27(6):41.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133