Forbes J M, Coughlan M T, Cooper M E. Oxidative stress as a major culprit in kidney disease in diabetes[J]. Diabetes, 2008, 57(6):1446.
[8]
Cave A C, Brewer A C, Narayanapanicker A, et al. NADPH oxidases in cardiovascular health and disease[J]. Antioxid Redox Signal, 2006, 8(5/6):691.
[9]
Shin C S, Moon B S, Park K S, et al. Serum8-hydroxy-guaninelevels are increased in diabetic patients[J]. Diabetes Care, 2001, 24(4):733.
[10]
Nishikawa T, Edelstein D, Du X L, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage[J]. Nature, 2000, 404 (6779):787.
[11]
Fujita H, Fujishima H, Chida S, et al. Reduction of renal superoxide dismutase in progressive diabetic nephropathy[J]. J Am Soc Nephrol, 2009, 20(6):1303.
[12]
Chander P N, Gealekman O, Brodsky S V, et al. Nephropathy in Zucker diabetic fat rat is associated with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger ebselen[J]. J Am Soc Nephrol, 2004, 15(9):2391.
[13]
Brezniceanu M L, Liu F, Wei C C, et al. Attenuation of interstitial fibrosis and tubular apoptosis in db/db transgenic mice overexpressing catalase in renal proximal tubular cells[J]. Diabetes, 2008, 57(2):451.
[14]
Pautz A, Franzen R, Dorsch S, et al. Cross-talk between nitric oxide and superoxide determines ceramide formation and apoptosis in glomerular cells[J]. Kidney Int, 2002, 61(3):790.
[15]
Lee H S. Mechanisms and consequences of TGF-β overexpression by podocytes in progressive podocyte disease[J]. Cell Tissue Res, 2012, 347(1):129.
[16]
Susztak K, Raff A C, Schiffer M, et al. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy[J]. Diabetes, 2006, 55(1):225.
[17]
Chung S S, Ho E C, Lam K S, et al. Contribution of polyol pathway to diabetes-induced oxidative stress[J]. J Am Soc Nephrol, 2003, 14(8 Suppl 3):S233.
[18]
Mason R M, Wahab N A. Extracellular matrix metabolism in diabetic nephropathy[J]. J Am Soc Nephrol, 2003, 14(5):1358.
[19]
Singh D K, Winocour P, Farrington K. Oxidative stress in early diabetic nerphropathy:fueling the fire[J]. Nat Rev Endocrinol, 2011, 7(3):176.
[20]
Lee H B, Yu M R, Yang Y, et al. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy[J]. J Am Soc Nephrol, 2003, 14(8 Suppl 3):S241.
[21]
Tikoo K, Meena R L, Kabra D G, et al. Change in post-translationalmodifications of histoneH3, heat-shockprotein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy[J]. Br J Pharmacol, 2008, 153(6):1225.
[22]
Dai T, Natarajan R, Nast C C, et al. Glucose and diabetes:effects on podocyte and glomerular p38MAPK, heat shock protein 25, and actin cytoskeleton[J]. Kidney Int, 2006, 69(5):806.
[23]
Geest C R, Buitenhuis M, Laarhoven A G, et al. p38 MAP kinase inhibits neutrophil development through phosphorylation of C/EBPalpha on serine 21[J]. Stem Cells, 2009, 27(9):2271.
[24]
Polzer K, Soleiman A, Baum W, et al. Selective p38MAPK isoform expression and activation in antineutrophil cytoplasmatic antibody-associated crescentic glomerulonephritis:role of p38MAPKalpha[J]. Ann Rheum Dis, 2008, 67(5):602.
Tapia E, Zatarain-Barrón Z L, Hernández-Pando R, et al. Curcumin reverses glomerular hemodynamic alterations and oxidant stress in 5/6 nephrectomized rats[J]. Phytomedicine, 2013, 20(3/4):359.
Chang C C, Chang C Y, Mu Y T, et al. Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase[J]. J Biomed Sci, 2011, 18(1):47.
[38]
Kitada M, Kume S, Imaizumi N, et al. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway[J]. Diabetes, 2011, 60(2):634.
[39]
Stanton R C. Oxidative stress and diabetic kidney disease[J]. Curr Diab Rep, 2011, 11(4):330.
[40]
Lonn E, Yusuf S, Hoogwerf B, et al. Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes:results of the HOPE study and MICRO-HOPE substudy[J]. Diabetes Care, 2002, 25(11):1919.
[41]
Alkhalaf A, Klooster A, van Oeveren W, et al. A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy[J]. Diabetes Care, 2010, 33(7):1598.
Sedeek M, Nasrallah R, Touyz R M, et al. NADPH oxidases, reactive oxygen species, and the kidney:friend and foe[J]. Am Soc Nephrol, 2013, 24(10):1512.
[48]
Sedeek M, Callera G, Montezano A, et al. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney:implications in type 2 diabetic nephropathy[J]. Am J Physiol Renal Physiol, 2010, 299(6):F1348.
[49]
Enslen H, Raingeaud J, Davis R J. Selective activation of p38 mitogen activated protein(MAP)kinase isoforms by the MAP kinase kinases MKK3 and MKK6[J]. J Biol Chem, 1998, 273(3):1741.