Yong Zhao, Joshua F Ransom, Ankang Li, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007, 129: 303.
Cesare Peschle. MicroRNAs control angiogenesis[J]. Blood, 2006, 108(9): 3068.
[4]
Tomohide Takaya, Koh Ono, Teruhisa Kawamura, et al. MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells[J]. Circ J, 2009, 73: 1492.
[5]
Cortez M A, Bueso-Ramos C, Ferdin J, et al. MicroRNAs in body fluids the mix of hormones and biomarkers[J]. Nature Rev Clin Oncol, 2011, 8(8): 467.
[6]
Di Stefano V, Zaccagnini G, Capogrossi M C, et al. microRNAs as peripheral blood biomarkers of cardiovascular disease[J]. Vascul Pharmacol, 2011, 55(4): 111.
[7]
Dickinson B A, Semus H M, Montgomery R L, et al. Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure[J]. Eur J Heart Fail, 2013, 15 (6): 650.
[8]
Gupta M K, Halley C, Duan Z H, et al. miRNA-548c: a specific signature in circulating PBMCs from dilated cardiomyopathy patients[J]. J Mol Cell Card, 2013, 62: 131.
[9]
Stenvang J, Silahtaroglu A N, Lindow M, et al. The utility of LNA in microRNA based cancer diagnostics and therapeutics[J]. Semin Cancer Biol, 2008, 18(2): 89.
[10]
Obad S, dos Santos C O, Andreas Petri, et al. Silencing of microRNA families by seed targeting tiny LNAs[J]. Nat Genet, 2011, 43:371.
[11]
Patrick D M, Montgomery R L. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice[J]. J Clin Invest, 2010, 120: 3912.
[12]
Thum T, Gross C. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signaling in fibroblasts[J]. Nature, 2008, 456: 980.
[13]
Lee R C, Feinbaum R L, Ambros V, et al. The C. elegans hetero-chronic gene lin-4 encodes small RNAs with antisense complementarity tolin-14[J]. Cell, 1993, 75(5): 843.
Wang J, Xiong X J. Current situation and perspectives of clinical study in integrative medicine in China[J]. Evid Based Complement Alternat Med, 2012, doi:268542.
[17]
Wang J, Xiong X J. Control strategy on hypertension in Chinese medicine[J]. Evid Based Complement Alternat Med, 2012, doi:284847.
Mariko Tatsuguchi, Hee Young Seok, Thomas E Callis, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy[J]. J Mol Cell Cardiol, 2007, 42(6): 1137.
[22]
Yunhui Cheng, Ruirui Ji, Junming Yue, et al. MicroRNAs are aberrantly expressed in hypertrophic heart-Do they play a role in cardiac hypertrophy[J]. Am J Pathol, 2007, 170(6): 1831.
[23]
Sayed D, Rane S, Lypowy J, et al. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths[J]. Mol Biol Cell, 2008, 19(8):3272.
[24]
Cimmino A, Calin G A, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2[J]. Proc Natl Acad, 2005, 102:13944.
[25]
Callis T E, Pandya K, Seok H Y, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice[J]. J Clin Invest, 2009, 119(9):2772.
[26]
van Rooij E, Sutherland L E, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA[J]. Science, 2007, 316(5824):575.
[27]
Montgomery R L, Hullinger T G, Semus H M, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure[J]. Circulation, 2011, 124(14):1537.
[28]
Molkentin J D, Lu J R, Markham B, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy[J]. Cell, 1998, 93(2): 215.
[29]
da Costa Martins P A, Salic K, Gladka M M, et al. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signaling[J]. Nat Cell Biol, 2010, 12(12): 1220.
[30]
Care A, Catalucci D, Felicetti F, et al.MicroRNA-133 controls cardiac hypertrophy[J]. Nat Med, 2007, 13(5): 613.
[31]
Wightman B, Ha I, Ruvkun G, et al. Posttranscriptional regulation of the hetero chronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J]. Cell, 1993, 75(5): 855.