全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

现代医学对恶性肿瘤转移相关机制的研究进展

Keywords: 现代医学,恶性肿瘤,转移机制,上皮间质转化,肿瘤干细胞

Full-Text   Cite this paper   Add to My Lib

Abstract:

恶性肿瘤转移是恶性肿瘤发生和演变过程中最危险的阶段,是恶性肿瘤患者死亡的首要原因,临床上,60%以上的恶性肿瘤患者在发现时已经转移。近年来,现代医学对恶性肿瘤转移的机制研究取得突破性进展,从单纯的“解剖和机械”学说向“种子与土壤”学说迈进,再向微环境学说、肿瘤干细胞学说深入,特别是新兴的肿瘤干细胞学说成功解释了恶性肿瘤转移表现的肿瘤遗传异质性、失巢凋亡抗性、肿瘤休眠等现象,为恶性肿瘤转移的治疗提供了更多新的靶点与诊疗思路。

References

[1]  韩钦芮,符秀琼,禹志领,等. 肿瘤微环境的脾虚本质探讨[J]. 中医杂志, 2014(4): 292.
[2]  方伟岗. 肿瘤细胞与微环境的相互作用决定肿瘤转移的最终归宿[J]. 前沿科学, 2011(3): 4.
[3]  李卫东,花宝金. 中医药调控肿瘤微环境"稳态"影响肿瘤复发转移的机制初探[J]. 中医杂志, 2011(22): 1891.
[4]  张慈安,魏品康,李勇进. 痰浊与肿瘤微环境的相关性探讨[J]. 中西医结合学报, 2010(3): 215.
[5]  惠起源,魏晓萍. 上皮间质转化在肿瘤发生发展中的作用[J]. 中国肿瘤, 2013(3): 219.
[6]  洪伦. 生长因子诱导的上皮-间质转化在人结肠癌细胞中的研究[D]. 长沙:中南大学, 2011.
[7]  Zhang X, Liu G, Kang Y, et al. N-cadherin expression is associated with acquisition of EMT phenotype and with enhanced invasion in erlotinib-resistant lung cancer cell lines[J]. PLoS ONE, 2013, 8(3): e57692.
[8]  孔界男. EGF通过PI3K-Akt/MAPK信号通路调控乳腺癌上皮间质转化[D]. 延边:延边大学, 2012.
[9]  Fantozzi A, Gruber D C, Pisarsky L, et al. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation[J]. Cancer Res, 2014, 74(5): 1566.
[10]  Niessen K, Fu Y, Chang L, et al. Slug is a direct Notch target required for initiation of cardiac cushion cellularization[J]. J Cell Biol, 2008, 182(2): 315.
[11]  Postigo A A. Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway[J]. EMBO J, 2003, 22(10): 2443.
[12]  Lisanti M P, Martinez-Outschoorn U E, Lin Z, et al. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs "fertilizer"[J]. Cell Cycle, 2011, 10(15): 2440.
[13]  Poste G, Fidler I J. The pathogenesis of cancer metastasis[J]. Nature, 1980, 283(5743): 139.
[14]  Bao W, Qiu H, Yang T, et al. Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma[J]. PLoS ONE, 2013, 8(7): e70616.
[15]  Townson J L, Naumov G N, Chambers A F. The role of apoptosis in tumor progression and metastasis[J]. Curr Mol Med, 2003, 3(7): 631.
[16]  Wynn T A. Cellular and molecular mechanisms of fibrosis[J]. J Pathol, 2008, 214(2): 199.
[17]  黄旭晖,王昌俊. 活血化瘀中药干预肿瘤血管新生的研究进展[J]. 广东医学, 2012(4): 550.
[18]  Reddy B Y, Lim P K, Silverio K, et al. The microenvironmental effect in the progression, metastasis, and dormancy of breast cancer: a model system within bone marrow[J]. Int J Breast Cancer, 2012, 12: 721659.
[19]  林举择,王昌俊. 肿瘤休眠防治肿瘤术后复发转移的策略[J]. 广东医学, 2013(1): 157.
[20]  刘忠涛,熊力,文宇,等. TGF-β介导的上皮间质转化[J]. 中国普通外科杂志, 2013(2): 211.
[21]  Menakongka A, Suthiphongchai T. Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion[J]. World J Gastroenterol, 2010, 16(6): 713.
[22]  Vazquez-Martin A, Cufi S, Oliveras-Ferraros C, et al. IGF-1R/epithelial-to-mesenchymal transition (EMT) crosstalk suppresses the erlotinib-sensitizing effect of EGFR exon 19 deletion mutations[J]. Sci Rep, 2013(3): 2560.
[23]  Medici D, Hay E D, Olsen B R. Snail and slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3[J]. Mol Biol Cell, 2008, 19(11): 4875.
[24]  Wang Y, Shi J, Chai K, et al. The role of snail in EMT and tumorigenesis[J]. Curr Cancer Drug Targets, 2013, 13(9): 963.
[25]  Lander R, Nordin K, Labonne C. The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1[J]. J Cell Biol, 2011, 194(1): 17.
[26]  Nelson W J, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways[J]. Science, 2004, 303(5663): 1483.
[27]  Ding Q, Xia W, Liu J C, et al. Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin[J]. Mol Cell, 2005, 19(2): 159.
[28]  Ford C E, Jary E, Ma S S, et al. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells[J]. PLoS ONE, 2013, 8(1): e54362.
[29]  Zha L, Zhang J, Tang W, et al. HMGA2 elicits EMT by activating the Wnt/beta-catenin pathway in gastric cancer[J]. Dig Dis Sci, 2013, 58(3): 724.
[30]  Zhang Y, Yang P, Wang X F. Microenvironmental regulation of cancer metastasis by miRNAs[J]. Trends Cell Biol, 2014, 24(3): 153.
[31]  Grassian A R, Lin F, Barrett R, et al. Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition (EMT)[J]. J Biol Chem, 2012, 287(50): 42180.
[32]  刘振,黄强,刘臣海,等. MicroRNA-21对胆管癌细胞侵袭与转移的影响[J]. 安徽医科大学学报, 2014(2): 190.
[33]  胡俊庭,鲍蕴文,白艳,等. 肺癌患者血清microRNA-21表达临床意义探讨[J]. 中华肿瘤防治杂志, 2014(1): 39.
[34]  Taube J H, Malouf G G, Lu E, et al. Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties[J]. Sci Rep, 2013, 3: 2687.
[35]  Harazono Y, Muramatsu T, Endo H, et al. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2[J]. PLoS ONE, 2013, 8(5): e62757.
[36]  Cong N, Du P, Zhang A, et al. Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/beta-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma[J]. Oncol Rep, 2013, 29(4): 1579.
[37]  Hur K, Toiyama Y, Takahashi M, et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis[J]. Gut, 2013, 62(9): 1315.
[38]  王倩荣,刘文超. 肿瘤微环境与肿瘤转移[J]. 中国肿瘤生物治疗杂志, 2011(5): 569.
[39]  Le N H, Franken P, Fodde R. Tumour-stroma interactions in colorectal cancer: converging on beta-catenin activation and cancer stemness[J]. Br J Cancer, 2008, 98(12): 1886.
[40]  韩钦芮,符秀琼,禹志领,等. 肿瘤微环境的脾虚本质探讨[J]. 中医杂志, 2014(4): 292.
[41]  朱耀东,刘延庆. 中药抑制肿瘤上皮间质转化的研究[J]. 中国实验方剂学杂志, 2014(6): 228.
[42]  Clarke M F, Dick J E, Dirks P B, et al. Cancer stem cells——perspectives on current status and future directions: AACR workshop on cancer stem cells[J]. Cancer Res, 2006, 66(19): 9339.
[43]  张洪也,程勇. 转移肿瘤干细胞在肿瘤转移中作用机制的研究进展[J]. 肿瘤, 2009(10): 1006.
[44]  Oskarsson T, Batlle E, Massague J. Metastatic stem cells: sources, niches, and vital pathways[J]. Cell Stem Cell, 2014, 14(3): 306.
[45]  张百红,王湘辉. 肿瘤微环境中的起始细胞[J]. 现代肿瘤医学, 2011(6): 1245.
[46]  Luo Y, Lan L, Jiang Y G, et al. Epithelial-mesenchymal transition and migration of prostate cancer stem cells is driven by cancer-associated fibroblasts in an HIF-1alpha/beta-catenin-dependent pathway[J]. Mol Cells, 2013, 36(2): 138.
[47]  Luzzi K J, Macdonald I C, Schmidt E E, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases[J]. Am J Pathol, 1998, 153(3): 865.
[48]  张英,林洪生. 肿瘤干细胞在肿瘤复发与转移中的作用[J]. 中国肿瘤, 2008(2): 125.
[49]  刘求真,姚开泰. 肿瘤干细胞与肿瘤转移[J]. 肿瘤学杂志, 2008(1): 10.
[50]  庄静,孙长岗,梁艳,等. 肿瘤干细胞学说及相关性中药作用机理的研究[J]. 世界中西医结合杂志, 2013(3): 275.
[51]  郭华,张宁. 上皮间充质转化与肿瘤干细胞的研究进展[J]. 中国肿瘤临床, 2013(15): 941.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133