Zhang X, Liu G, Kang Y, et al. N-cadherin expression is associated with acquisition of EMT phenotype and with enhanced invasion in erlotinib-resistant lung cancer cell lines[J]. PLoS ONE, 2013, 8(3): e57692.
Fantozzi A, Gruber D C, Pisarsky L, et al. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation[J]. Cancer Res, 2014, 74(5): 1566.
[10]
Niessen K, Fu Y, Chang L, et al. Slug is a direct Notch target required for initiation of cardiac cushion cellularization[J]. J Cell Biol, 2008, 182(2): 315.
[11]
Postigo A A. Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway[J]. EMBO J, 2003, 22(10): 2443.
[12]
Lisanti M P, Martinez-Outschoorn U E, Lin Z, et al. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs "fertilizer"[J]. Cell Cycle, 2011, 10(15): 2440.
[13]
Poste G, Fidler I J. The pathogenesis of cancer metastasis[J]. Nature, 1980, 283(5743): 139.
[14]
Bao W, Qiu H, Yang T, et al. Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma[J]. PLoS ONE, 2013, 8(7): e70616.
[15]
Townson J L, Naumov G N, Chambers A F. The role of apoptosis in tumor progression and metastasis[J]. Curr Mol Med, 2003, 3(7): 631.
[16]
Wynn T A. Cellular and molecular mechanisms of fibrosis[J]. J Pathol, 2008, 214(2): 199.
Reddy B Y, Lim P K, Silverio K, et al. The microenvironmental effect in the progression, metastasis, and dormancy of breast cancer: a model system within bone marrow[J]. Int J Breast Cancer, 2012, 12: 721659.
Menakongka A, Suthiphongchai T. Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion[J]. World J Gastroenterol, 2010, 16(6): 713.
[22]
Vazquez-Martin A, Cufi S, Oliveras-Ferraros C, et al. IGF-1R/epithelial-to-mesenchymal transition (EMT) crosstalk suppresses the erlotinib-sensitizing effect of EGFR exon 19 deletion mutations[J]. Sci Rep, 2013(3): 2560.
[23]
Medici D, Hay E D, Olsen B R. Snail and slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3[J]. Mol Biol Cell, 2008, 19(11): 4875.
[24]
Wang Y, Shi J, Chai K, et al. The role of snail in EMT and tumorigenesis[J]. Curr Cancer Drug Targets, 2013, 13(9): 963.
[25]
Lander R, Nordin K, Labonne C. The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1[J]. J Cell Biol, 2011, 194(1): 17.
[26]
Nelson W J, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways[J]. Science, 2004, 303(5663): 1483.
[27]
Ding Q, Xia W, Liu J C, et al. Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin[J]. Mol Cell, 2005, 19(2): 159.
[28]
Ford C E, Jary E, Ma S S, et al. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells[J]. PLoS ONE, 2013, 8(1): e54362.
[29]
Zha L, Zhang J, Tang W, et al. HMGA2 elicits EMT by activating the Wnt/beta-catenin pathway in gastric cancer[J]. Dig Dis Sci, 2013, 58(3): 724.
[30]
Zhang Y, Yang P, Wang X F. Microenvironmental regulation of cancer metastasis by miRNAs[J]. Trends Cell Biol, 2014, 24(3): 153.
[31]
Grassian A R, Lin F, Barrett R, et al. Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition (EMT)[J]. J Biol Chem, 2012, 287(50): 42180.
Taube J H, Malouf G G, Lu E, et al. Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties[J]. Sci Rep, 2013, 3: 2687.
[35]
Harazono Y, Muramatsu T, Endo H, et al. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2[J]. PLoS ONE, 2013, 8(5): e62757.
[36]
Cong N, Du P, Zhang A, et al. Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/beta-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma[J]. Oncol Rep, 2013, 29(4): 1579.
[37]
Hur K, Toiyama Y, Takahashi M, et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis[J]. Gut, 2013, 62(9): 1315.
[38]
王倩荣,刘文超. 肿瘤微环境与肿瘤转移[J]. 中国肿瘤生物治疗杂志, 2011(5): 569.
[39]
Le N H, Franken P, Fodde R. Tumour-stroma interactions in colorectal cancer: converging on beta-catenin activation and cancer stemness[J]. Br J Cancer, 2008, 98(12): 1886.
Clarke M F, Dick J E, Dirks P B, et al. Cancer stem cells——perspectives on current status and future directions: AACR workshop on cancer stem cells[J]. Cancer Res, 2006, 66(19): 9339.
Oskarsson T, Batlle E, Massague J. Metastatic stem cells: sources, niches, and vital pathways[J]. Cell Stem Cell, 2014, 14(3): 306.
[45]
张百红,王湘辉. 肿瘤微环境中的起始细胞[J]. 现代肿瘤医学, 2011(6): 1245.
[46]
Luo Y, Lan L, Jiang Y G, et al. Epithelial-mesenchymal transition and migration of prostate cancer stem cells is driven by cancer-associated fibroblasts in an HIF-1alpha/beta-catenin-dependent pathway[J]. Mol Cells, 2013, 36(2): 138.
[47]
Luzzi K J, Macdonald I C, Schmidt E E, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases[J]. Am J Pathol, 1998, 153(3): 865.