全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

化学计量学在中药组效关系研究中的应用进展

Keywords: 化学计量学,中药组效关系,多元统计分析,人工神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

化学计量学是一门新兴的化学分支学科,被广泛应用于分析化学的各个领域。它运用数学、统计学、计算机科学以及其他相关学科的理论和方法,优化化学量测过程,通过解析化学测量数据,最大限度地获取有关物质系统的化学信息及其他信息。近年来,中药研究受到了人们的广泛关注。在中药研究中,如何阐释多样的化学组分与其药效之间的关系一直是一个重点难题,严重制约了中药现代化发展。化学计量学将多变量的分析方法引入化学研究,为中药组效关系研究提供了有效的研究工具。该文就近年来化学计量学方法在中药组效关系研究中的应用及进展展开综述,详细介绍了回归分析、相关分析、主成分分析等多元统计分析方法以及BP神经网络、径向基网络、支持向量机等人工神经网络的应用,包括基本原理、研究内容以及优缺点,最后,简要分析了其存在的问题并对其未来的发展进行展望。

References

[1]  梁逸曾,龚范,俞汝勤.化学计量学用于中医药研究[J].化学进展,1999,11(2): 208.
[2]  张润楚. 多元统计分析[M]. 北京: 科学出版社, 2010: 1.
[3]  李洁明, 祁新娥. 统计学原理[M]. 上海: 复旦大学出版社, 2005: 337.
[4]  Zang Q C, Wang J B, Kong W J, et al. Searching for the main anti-bacterial components in artificial Calculus bovis using UPLC and microcalorimetry coupled with multi-linear regression analysis [J].J Sep Sci, 2011, 34(23): 3330.
[5]  尹莲,钱俊.加味四妙丸有效部位群GC指纹图谱谱效关系及配伍变化研究[J].中成药,2007,29(5): 634.
[6]  钱俊,尹莲.加味四妙丸有效部位群HPLC指纹图谱归属分析及谱效关系研究[J].世界科学技术--中医药现代化,2007,9(1): 40.
[7]  许禄.化学计量学方法[M]. 北京: 科学出版社, 2004: 75.
[8]  黄勇,齐晓岚,官志忠,等.灯盏细辛组分对脑神经细胞损伤保护作用的谱效关系研究[J].中国中药杂志,2010,35(8): 1038.
[9]  孔维军,赵艳玲,山丽梅,等.左金丸及类方HPLC指纹图谱与生物热活性的"谱-效"关系研究[J].化学学报,2008,66(22): 2533.
[10]  Kong W J, Zhao Y L, Xiao X H, et al. Spectrum-effect relationships between ultra performance liquid chromatography fingerprints and anti-bacterial activities of Rhizoma coptidis[J]. Anal Chim Acta, 2009, 634(2): 279.
[11]  Kong W J, Zhao Y L, Shan L M, et al. Investigation on the spectrum-effect relationships of EtOAc extract from Radix Isatidis based on HPLC fingerprints and microcalrimetry [J]. J Chromatogr B, 2008,871(1): 109.
[12]  朱尔一, 杨芃原. 化学计量学技术及应用[M]. 北京: 科学出版社, 2001: 84.
[13]  Wang X W, Wang Y, Cheng Y Y. Empirical study on modeling quantitative composition-activity relationships in Chinese hebal medicion-27th annual conference of the IEEE engineering in medicine and biology, Shanghai[C]. New York: IEEE, 2005: 7722.
[14]  Chau F T, Chan H Y, Cheung C Y, et al. Recipe for uncovering the bioactive components in herbal medicine [J]. Anal Chem, 2009, 81(17): 7271.
[15]  张磊, 聂磊, 王唯红. 黄芪注射液色谱指纹图谱与抗氧化作用的相关分析[J]. 中药材, 2009, 32(11): 1757.
[16]  Jiang J L, Jin X L, Zhang H, et al. Identification of antitumor constituents in curcuminoids from Curcuma longa L.based on the composition-activity relationship [J].J Pharm Biomed Anal, 2012, 70: 664.
[17]  蒋建兰,丁洪涛,苏鑫,等.基于组效关系的姜黄挥发油抗肿瘤活性成分辨识研究[J].分析化学,2012,40(10): 1488.
[18]  孙芳芳.浅议灰色关联度分析方法及其应用[J].科技信息,2010,17: 880.
[19]  梁建娣,赵良功,刘小花,等.少毛北前胡化痰作用的谱效关系研究[J].中国中药杂志,2012,37(19): 2894.
[20]  李治建,周露,古力娜·达吾提,等.地锦草洗脱部位指纹图谱特征与其抗真菌作用的灰关联度分析[J].中国中药杂志,2012,37(5): 580.
[21]  Wang Y, Jin Y C, Zhou C G, et al. Discovering active compounds from mixture of natural products by data mining approach [J]. Med Biol Eng Comput, 2008, 46(6): 605.
[22]  Cheng Y Y, Wang Y, Wang X W. A causal relationship discovery-based approach to identifying active components of herbal medicine [J]. Comput Biol Chem, 2006, 30(2): 148.
[23]  吴宏伟,陈建新,杨洪军,等.丹参成分组合与抗氧化活性相关性分析[J].中国实验方剂学杂志,2009,15(8): 68.
[24]  李振坤,陈建新,杨洪军,等.基于LARS算法的川芎成分组合与血管活性关系分析[J].中国实验方剂学杂志,2009,15(3): 24.
[25]  Chauvin Y, Rumelhart D E. Back Propagation: Theory, Architectures and Applications [M]. Brighton: Psychology Press, 1995: 1.
[26]  朱尔一, 杨芃原. 化学计量学技术及应用[M]. 北京: 科学出版社, 2001: 148.
[27]  侯恩广,李树彬,李珂,等.基于神经网络的中药黄芩药效评价方法研究[J].山东科学,2011,24(1): 72.
[28]  史峰, 王小川, 郁磊, 等. MATLAB神经网络30个案例分析[M]. 北京: 北京航空航天大学出版社, 2011: 21.
[29]  范骁辉,程翼宇.中药复杂组效关系的变结构神经网络辨识方法[J].高等学校化学学报,2004,25(11): 2004.
[30]  刘雪松,王毅,程翼宇.-种基于进化学习的中药定量组效关系建模方法[J].浙江大学学报,2005,39(4): 495.
[31]  Broomhead D S, Lowe D. Multivariable functional interpolation and adaptive networks [J]. Complex Syst, 1988, 2(3): 321.
[32]  张玉瑞,陈剑波.基于RBF神经网络的时间序列预测[J].计算机工程与应用,2005,41(11): 74.
[33]  赵筱萍,范骁辉,余杰,等.-类基于组效关系神经网络模型的中药药效预测方法[J].中国中药杂志,2004,29(11): 1082.
[34]  陈超,唐春萍,沈志滨,等.香丹注射液抗急性心肌缺血有效部位的模拟筛选[J].广东药学院学报,2009,25(4): 352.
[35]  陈超,沈志滨.基于RBF 神经网络的加味生化汤药效模拟研究[J].中草药,2009,40(8): 1239.
[36]  Vladimir V, Steven E G, Alex S. Support vector method for function approximation, regression estimation, and signal processing [J]. Adv Neural Inf Process Syst, 1996, 9: 140
[37]  史峰, 王小川, 郁磊, 等. MATLAB神经网络30个案例分析[M]. 北京: 北京航空航天大学出版社, 2011: 122.
[38]  Eskidere , Ertas F, Hanili C. A comparison of regression methods for remote tracking of Parkinson\'s disease progression [J]. Expert Syst Appl, 2012, 39(5): 5523.
[39]  Zhou H, Zhao J P, Zheng L G, et al. Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization [J]. Eng Appl Artif Intel, 2012, 25(1): 147.
[40]  Wang Y, Wang X W, Cheng Y Y. A computational approach to botanical drug design by modeling quantitative composition-activity relationship [J]. Chem Biol Drug Des, 2006, 68(3): 166.
[41]  Chen C, Li S X, Wang S M, et al. A support vector machine based pharmacodynamic prediction model for searching active fraction and ingredients of herbal medicine: naodesheng prescription as an example [J].Pharm Biomed Anal, 2011, 56(2): 443.
[42]  Yan S K, Lin Z Y, Dai W X, et al. Chemometrics-based approach to modeling quantitative composition-activity relationships for Radix Tinosporae [J]. Interdiscip Sci Comput Life Sci, 2010, 2(3): 221.
[43]  Jiang J L, Zhang H, Zhou P P, et al. Composition-activity relationship modeling to predict the antitumor activity for quality control of curcuminoids from Curcuma longa L.[J]. Anal Methods, 2013, 5(3): 641.
[44]  Jiang J L, Su X, Ding H T, et al. A novel approach to evaluate the quality and identify the active compounds of the essential oil from Curcuma longa L. [J]. Anal Lett, 2013, 46(8): 1213.
[45]  Cabrera A C, Prieto J M. Application of artificial neural networks to the prediction of the antioxidant activity of essential oils in two experimental in vitro models [J]. Food Chem, 2010, 118(1): 141.
[46]  Li Z D, Han S N, Jiang J L, et al. Antitumor compound identification from Zanthoxylum bungeanum essential oil based on composition-activity relationship [J]. Chem Res Chin Univ, doi: 10.1007/s40242-013-3223-3.
[47]  程翼宇,瞿海斌.信息技术在中药现代化研究中的应用及发展[J].世界科学技术--中医药现代化,2002,4(3): 37.
[48]  Chen C, Li S X, Wang S M, et al. Mutiple information contents derived from the chromatograms and their application to the modeling of quantitative profile-efficacy relationship[J]. Anal Chim Acta, 2012, 713: 30.
[49]  Chen C, Yuan J, Li X J, et al. Chemometrics-based approach to feature selection of chromatographic profiles and its application to search active fraction of herbal medicine [J]. Chem Biol Drug Des, 2013, 81(6): 688.
[50]  周立东.建议在天然药物研究中建立"定量组效关系"(QCAR)概念[J].世界科学技术--中医药现代化,1999,1(2): 33.
[51]  王旋, 郝海平, 王广基. 化学计量学在中药复方整体研究中的应用研究进展[J]. 中国天然药物, 2009, 7(3): 234.
[52]  孙琴,马丽,李兰,等.板蓝根中红细胞凝集效应组分的谱效关系研究[J].中草药,2012,43(1): 125.
[53]  罗批,郭继昌,李锵,等.基于偏最小二乘回归建模的探讨[J].天津大学学报,2002,35(6): 783.
[54]  Zhu L P, Zhu L X. On distribution-weighted partial least squares with diverging number of highly correlated predictors [J]. J R Statist Soc, 2009,71: 525.
[55]  Kvalheim O M, Chan H Y, Benzie I F F, et al. Chromatographic profiling and multivariate analysis for screening and quantifying the contributions from individual components to the bioactive signature in natural products [J]. Chemometr Intell Lab, 2011, 107(1): 98.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133