全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

红芪多糖HPS1-D的化学结构和抗补体活性研究

Keywords: 红芪,多糖,结构,构象,抗补体

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:红芪多糖HPS1-D的化学结构、初步构象和抗补体活性的研究。方法:红芪经水提醇沉法提取、Sevage法脱蛋白、H2O2脱色素、SephadexG-100色谱柱分离纯化得到均一的红芪多糖HPS1-D。以GC、高效液相凝胶色谱法(HPLC-GPC)、凝胶渗透色谱-多角度激光散射仪联用法(GPC-MALLS)、元素分析、苯酚硫酸法、Bradford法、硫酸咔唑法研究其理化性质;采用甲基化、部分酸水解、以及NMR研究其连接方式、主链和支链结构及分支点状况;以GPC-MALLS、对其构象进行初步分析;采用细胞溶血法对其抗补体活性进行研究。结果:HPS1-D主要由葡萄糖和阿拉伯糖组成,主链骨架由1,4和1,4,6-α-D-Glcp,侧链分支位于葡萄糖6位;侧链分支主要由1,5和1,3,5-α-L-Araf组成;相对分子质量为5.2×105,在0.9%NaCl溶液中为无规则线团;抗补体实验表明HPS1-D有一定程度的抗补体活性,并呈一定的剂量效应关系。结论:HPS1-D为1种新的中性红芪杂多糖,具有一定的抗补体活性。

References

[1]  赵良功, 李晓东, 赵建辉, 等. 4 种红芪多糖对实验性糖尿病小鼠血糖的影响[J].中药材, 2009, 32(10):1590.
[2]  兰中芬,张兆林,程周权,等.红芪多糖成分的分析及其小鼠免疫功能与移植性肿瘤的作用[J].中国药理学报,1987,8(3):275.
[3]  Song Q H, Kobayashi T, Xiu L M, et al. Effects of Astragali root and Hedysari root on the murine B and T cell differentiation[J]. J Ethnopharmacol, 2000, 73:111.
[4]  中国药典. 一部[S]. 2010:142.
[5]  权菊香, 杜贵友. 黄芪与红芪对脑缺血动物保护作用的研究[J].中国中药杂志, 1998, 23 (6):371.
[6]  金智生,李应东,汝亚琴,等.红芪多糖对糖尿病大鼠肾组织匀浆NO、NOS及过氧化脂质的影响[J].中国中西医结合急救杂志,2004,11(3):141.
[7]  Wang J Z, Ito H, Shimura K, et al. Enhancing effect of antitumor polysaccharide from astragalus or radix hedysarum on C3 cleavage production of macrophages in mice[J]. Japan J Pharmacol, 1989, 51:432.
[8]  张娟娟,卢燕,陈道峰.鱼腥草抗补体活性多糖的制备工艺研究[J].中国中药杂志,2012,37(14): 2071.
[9]  李向东, 惠和平, 封士兰, 等. 红芪多糖的脱蛋白及脱色素工艺[J]. 生物医药, 2010, 17(3):40.
[10]  张惟杰. 糖复合物生化研究技术[M]. 2版. 杭州:浙江大学出版社, 1999.
[11]  Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(7): 248.
[12]  黄凯, 李志孝, 邓永康, 等. 药用真菌马勃多糖的分离纯化及结构分析[J]. 华西药学杂志, 2008, 23(5):516.
[13]  Needs P W, Selvendran R R. Avoiding oxidative degradation during sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide[J]. Carbohydr Res, 1993, 245: 1.
[14]  Rout D, Mondal S, Chakraborty I, et al. The structure and conformationof a water-insoluble (1→3)-, (1→6)-β-d-glucan from the fruiting bodies of Pleurotus florida[J]. Carbohydr Res, 2008, 343:982.
[15]  Xu H, Zhang Y Y, Zhang J W, et al. Isolation and characterization of an anti-complementary polysaccharide D3-S1 from the roots of Bupleurum smithii[J]. Int Immunopharmacol, 2007, 7:175.
[16]  Sun Y L, Cui S W, Tang J, et al. Structural features of pectic polysaccharide from Angelica sinensis (Oliv.) Diels[J]. Carbohydr Polym, 2010, 80:544.
[17]  Khramova D S, Golovchenko V V, Shashkov A S.Chemical composition and immunomodulatory activity of a pectic polysaccharide from the ground thistle Cirsium esculentum Siev[J]. Food Chem, 2011, 126: 870.
[18]  Cordeiro L M C, Reinhardt V F, Baggio C H, et al.Arabinan and arabinan-rich pectic polysaccharides from quinoa (Chenopodium bquinoa) seeds: structure and gastroprotective activity[J]. Food Chem, 2012, 130:937.
[19]  Kang J, Cui S W, Phillips G O, et al. New studies on gum ghatti (Anogeissus latifolia) Part Ⅲ. Structure characterization of a globular polysaccharide fraction by 1D, 2D NMR spectroscopy and ethylation analysis[J]. Food Hydrocolloid, 2011, 25: 1999.
[20]  Raisa G O, Victoria V G, Sergey V P, et al. Chemical composition and anti-inflammatory activity of pectic polysaccharide isolated from celery stalks[J]. Food Chem, 2009, 114: 610.
[21]  Niu Y G, Wang H Y, Xie Z H, et al. Structural analysis and bioactivity of a polysaccharide from the roots of Astragalus membranaceus (Fisch) Bge. var. mongolicus(Bge.) Hsiao[J]. Food Chem, 2011, 128: 620.
[22]  Ye L B, Zhang J S, Yang Y, et al. Structural characterisation of a heteropolysaccharide by NMR spectra[J]. Food Chem, 2009, 112: 962.
[23]  Zhang A Q, Sun P L, Zhang J S, et al. Structural investigation of a novel fucoglucogalactan isolated from the fruiting bodies of the fungus Hericium erinaceus[J].Food Chem, 2007, 104: 451.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133