Hua W, Song J, Li C, et al. Molecular cloning and characterization of the promoter of SmGGPPs and its expression pattern in Salvia miltiorrhiza[J]. Mol Biol Rep, 2012, 39(5): 5775.
[2]
Kai G, Pan L, Tong Z, et al. Characterization, expression profiling, and functional identification of a gene encoding geranylgeranyl diphosphate synthase from Salvia miltiorrhiza[J]. Biotechnol Bioproc Eng, 2010, 15(2): 236.
Cheng Q, Su P, Hu Y, et al.RNA interference-mediated repression of SmCPS ( copalyldiphosphate synthase) expression in hairy roots of Salvia miltiorrhizacauses a decrease of tanshinones and sheds light on the functional role of SmCPS[J]. Biotechnol Lett,2014,36(2): 363.
Guo J, Zhou Y, Hillwig L, et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts[J]. Proc Natl Acad Sci USA, 2013, 110(29): 12108.
Shi M, Luo X Q, Ju G H, et al. Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase[J]. Funct Integr Genomic,2014, 14(3): 603.
[10]
Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440: 940.
[11]
Ajikumar P K, Xiao W H, Tyo K E, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330: 70.
[12]
Leonard E, Ajikumar P K, Thayer K, et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control[J]. Proc Natl Acad Sci USA, 2010, 107: 13654.
[13]
Dai Z, Wang B, Liu Y, et al. Producing aglycons of ginsenosides in bakers\' yeast[J]. Sci Rep, 2014, 4: 3698.
[14]
Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496: 528.
[15]
Robertson A L, Holmes G R, Bojarczuk A N, et al. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism[J]. Sci Transl Med, 2014, 6(225): 1198.
[16]
Dong Y, Morris-Natschke S L, Lee K H. Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents[J]. Nat Prod Rep, 2011, 28(3): 529.
[17]
Cheng T O. Cardiovascular effects of Danshen[J]. Int J Cardiol, 2007, 121(1): 9.
Cheng Qiqing, He Yunfei, Li Geng, et al. Effects of combined elicitors on tanshinone metabolic profiling and SmCPS expression in Salvia miltiorrhiza hairy root cultures[J]. Molecules,2013,18(7): 7473.
[24]
Gao W, Sun H X, Xiao H, et al. Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza[J]. BMC Genomics, 2014, doi: 10.1186/1471-2164-15-73.
[25]
Wenping H, Yuan Z, Jie S, et al. De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients[J]. Genomics, 2011, 98(4): 272.
[26]
Yang L, Ding G, Lin H, et al. Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis[J]. PLoS ONE, 2013, 8(11): e80464.
[27]
Chen H. Computational identification and systematic vlassification of novel cytochrome P450 genes in Salvia miltiorrhiza[J]. PLoS ONE, 2014, 9(12): e115149.
[28]
Xu Zhichao,Peters Reuben J, Weirather Jason, et al. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis[J]. Plant J, 2015,82(6): 951.
Ma Y, Yuan L, Wu B, et al. Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza[J]. J Exp Bot, 2012, 63(7): 2809.
[31]
Zhang L, Yan X, Wang J, et al. Molecular cloning and expression analysis of a new putative gene encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Salvia miltiorrhiza[J]. Acta Physiol Plant, 2011, 33(3): 953.
[32]
Liao P, Zhou W, Zhang L, et al. Molecular cloning, characterization and expression analysis of a new gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Salvia miltiorrhiza[J]. Acta Physiol Plant, 2009, 31(3): 565.
[33]
Yang D, Ma P, Liang X, et al. PEG and ABA trigger methyl jasmonate accumulation to induce the MEP pathway and increase tanshinone production in Salvia miltiorrhiza hairy roots[J]. Acta Physiol Plant, 2012, 146(2): 173.
[34]
Cui G, Huang L, Tang X, et al. Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray[J]. Mol Biol Rep, 2011, 38(4): 2471.
[35]
Xing B. Ag+ as a more effective elicitor for production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy roots[J]. Molecules, 2014, 20(1): 309.
[36]
Dai Z, Cui G, Zhou S F, et al. Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation[J]. Plant Physiol, 2010, 168(2): 148.
Kai G, Xu H, Zhou C, et al. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures[J]. Metab Eng, 2011, 13(3): 319.
[39]
Yan Y, Zhang S, Yang D, et al. Effects of Streptomyces pactum Act12 on Salvia miltiorrhiza hairy root growth and tanshinone synthesis and its mechanisms[J]. Appl Biochem Biotechnol, 2014, 173(4): 883.
[40]
Shu J W, Ming S, Jian Y W. Cloning and characterization of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene for diterpenoid tanshinone biosynthesis inSalvia miltiorrhiza (Chinese sage) hairy roots[J]. Biotechnol Appl Biochem, 2009, 52(1): 89.
[41]
Yan X M, Zhang L, Wang J, et al. Molecular characterization and expression of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) gene from Salvia miltiorrhiza[J]. Acta Physiol Plant, 2009, 31: 1015.
Hao G, Shi R, Tao R, et al. Cloning, molecular characterization and functional analysis of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR) gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza Bge. f. alba[J]. Plant Physiol Biochem, 2013, 70(1): 21.
Hillwig M L, Xu M, Toyomasu T, et al. Domain loss has independently occurred multiple times in plant terpene synthase evolution[J]. Plant J Cell Mol Biol, 2011, 68(6): 1051.
[50]
Zhou K, Gao Y, Hoy J A, et al. Insights into diterpene cyclization from structure of bifunctional abietadiene synthase from Abies grandis[J]. J Biol Chem, 2012,287(9): 6840.
[51]
Gao W, Hillwig M L, Huang L, et al. A functional genomics approach to tanshinone biosynthesis provides stereochemical insights[J].Org Lett,2009,11: 5170.
[52]
Zhou Y J, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. J Am Chem Soc, 2012, 134(6): 3234.
[53]
Dai Z, Liu Y, Huang L, et al. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2012, 109(11): 2845.