全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

丹参酮合成生物学研究进展

Keywords: 丹参酮,生物合成途径,合成生物学,中药合成生物学

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过阐明并模拟中药活性成分生物合成的基本规律,人工设计并构建新的、具有特定生理功能的生物系统(药用植物或微生物系统),这种中药合成生物学研究策略,将是一种极具潜力的中药活性成分资源获取方法。丹参酮是丹参中一类具有显著药理活性的二萜,该文系统介绍了丹参酮合成生物学研究进展,旨在为其他中药萜类活性成分研究提供借鉴,为中药资源可持续利用研究提供新的研究策略。

References

[1]  Hua W, Song J, Li C, et al. Molecular cloning and characterization of the promoter of SmGGPPs and its expression pattern in Salvia miltiorrhiza[J]. Mol Biol Rep, 2012, 39(5): 5775.
[2]  Kai G, Pan L, Tong Z, et al. Characterization, expression profiling, and functional identification of a gene encoding geranylgeranyl diphosphate synthase from Salvia miltiorrhiza[J]. Biotechnol Bioproc Eng, 2010, 15(2): 236.
[3]  张蕾.丹参牻牛儿基牻牛儿基焦磷酸合酶基因的克隆与功能研究[D]. 北京: 中国人民解放军军事医学科学院,2009.
[4]  Cheng Q, Su P, Hu Y, et al.RNA interference-mediated repression of SmCPS ( copalyldiphosphate synthase) expression in hairy roots of Salvia miltiorrhizacauses a decrease of tanshinones and sheds light on the functional role of SmCPS[J]. Biotechnol Lett,2014,36(2): 363.
[5]  高伟. 丹参酮类化合物生物合成相关酶基因克隆及功能研究[D].北京: 中国中医科学院,2008.
[6]  漆小泉,崔光红,靳保龙.SmCPS4蛋白及其编码基因与应用: 中国,CN103849614A[P].2014-06-11.
[7]  Guo J, Zhou Y, Hillwig L, et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts[J]. Proc Natl Acad Sci USA, 2013, 110(29): 12108.
[8]  蔡媛, 郭娟, 周雍进,等. 转化次丹参酮二烯酿酒酵母全细胞催化体系的构建[J]. 药学学报, 2013, 48(10): 1618.
[9]  Shi M, Luo X Q, Ju G H, et al. Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase[J]. Funct Integr Genomic,2014, 14(3): 603.
[10]  Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440: 940.
[11]  Ajikumar P K, Xiao W H, Tyo K E, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330: 70.
[12]  Leonard E, Ajikumar P K, Thayer K, et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control[J]. Proc Natl Acad Sci USA, 2010, 107: 13654.
[13]  Dai Z, Wang B, Liu Y, et al. Producing aglycons of ginsenosides in bakers\' yeast[J]. Sci Rep, 2014, 4: 3698.
[14]  Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496: 528.
[15]  Robertson A L, Holmes G R, Bojarczuk A N, et al. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism[J]. Sci Transl Med, 2014, 6(225): 1198.
[16]  Dong Y, Morris-Natschke S L, Lee K H. Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents[J]. Nat Prod Rep, 2011, 28(3): 529.
[17]  Cheng T O. Cardiovascular effects of Danshen[J]. Int J Cardiol, 2007, 121(1): 9.
[18]  王庆浩,陈爱华,张伯礼.丹参: 一种中药研究的模式生物[J].中医药学报,2009,37(4): 1.
[19]  黄璐琦, 戴住波, 吕冬梅, 等.探讨道地药材研究的模式生物及模型[J]. 中国中药杂志,2009,34(9): 1063.
[20]  吕冬梅. 道地药材研究模型"丹参毛状根"的评价研究[D].北京: 中国中医科学院,2008.
[21]  崔光红. 丹参道地药材cDNA芯片构建及毛状根基因表达谱研究[D].北京: 中国中医科学院,2006.
[22]  王学勇. 丹参毛状根基因诱导表达分析及其有效成分生物合成基因的克隆研究[D]. 北京: 中国中医科学院,2007.
[23]  Cheng Qiqing, He Yunfei, Li Geng, et al. Effects of combined elicitors on tanshinone metabolic profiling and SmCPS expression in Salvia miltiorrhiza hairy root cultures[J]. Molecules,2013,18(7): 7473.
[24]  Gao W, Sun H X, Xiao H, et al. Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza[J]. BMC Genomics, 2014, doi: 10.1186/1471-2164-15-73.
[25]  Wenping H, Yuan Z, Jie S, et al. De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients[J]. Genomics, 2011, 98(4): 272.
[26]  Yang L, Ding G, Lin H, et al. Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis[J]. PLoS ONE, 2013, 8(11): e80464.
[27]  Chen H. Computational identification and systematic vlassification of novel cytochrome P450 genes in Salvia miltiorrhiza[J]. PLoS ONE, 2014, 9(12): e115149.
[28]  Xu Zhichao,Peters Reuben J, Weirather Jason, et al. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis[J]. Plant J, 2015,82(6): 951.
[29]  崔光红,王学勇,冯华,等. 丹参乙酰CoA酰基转移酶基因全长克隆和SNP分析[J]. 药学学报,2010(6): 785.
[30]  Ma Y, Yuan L, Wu B, et al. Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza[J]. J Exp Bot, 2012, 63(7): 2809.
[31]  Zhang L, Yan X, Wang J, et al. Molecular cloning and expression analysis of a new putative gene encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Salvia miltiorrhiza[J]. Acta Physiol Plant, 2011, 33(3): 953.
[32]  Liao P, Zhou W, Zhang L, et al. Molecular cloning, characterization and expression analysis of a new gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Salvia miltiorrhiza[J]. Acta Physiol Plant, 2009, 31(3): 565.
[33]  Yang D, Ma P, Liang X, et al. PEG and ABA trigger methyl jasmonate accumulation to induce the MEP pathway and increase tanshinone production in Salvia miltiorrhiza hairy roots[J]. Acta Physiol Plant, 2012, 146(2): 173.
[34]  Cui G, Huang L, Tang X, et al. Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray[J]. Mol Biol Rep, 2011, 38(4): 2471.
[35]  Xing B. Ag+ as a more effective elicitor for production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy roots[J]. Molecules, 2014, 20(1): 309.
[36]  Dai Z, Cui G, Zhou S F, et al. Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation[J]. Plant Physiol, 2010, 168(2): 148.
[37]  张夏楠, 郭娟, 申业,等. 一个新的丹参3-羟基-3-甲基戊二酰辅酶A还原酶3基因的克隆及其表达分析[J]. 中国中药杂志, 2012, 37(16): 2378.
[38]  Kai G, Xu H, Zhou C, et al. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures[J]. Metab Eng, 2011, 13(3): 319.
[39]  Yan Y, Zhang S, Yang D, et al. Effects of Streptomyces pactum Act12 on Salvia miltiorrhiza hairy root growth and tanshinone synthesis and its mechanisms[J]. Appl Biochem Biotechnol, 2014, 173(4): 883.
[40]  Shu J W, Ming S, Jian Y W. Cloning and characterization of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene for diterpenoid tanshinone biosynthesis inSalvia miltiorrhiza (Chinese sage) hairy roots[J]. Biotechnol Appl Biochem, 2009, 52(1): 89.
[41]  Yan X M, Zhang L, Wang J, et al. Molecular characterization and expression of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) gene from Salvia miltiorrhiza[J]. Acta Physiol Plant, 2009, 31: 1015.
[42]  王学勇, 崔光红, 黄璐琦,等. 丹参4-(5\'-二磷酸胞苷)-2-C-甲基-D-赤藓醇激酶的cDNA全长克隆及其诱导表达分析[J].药学学报, 2008, 43(12): 1251.
[43]  高伟, 程琪庆, 马晓惠,等. 丹参2-C-甲基-D-赤藓糖醇2,4-环焦磷酸合成酶(SmMCS)基因全长克隆及其生物信息学分析[J]. 中国中药杂志, 2012, 37(22): 3365.
[44]  程琪庆,何云飞,李耿,等. 丹参4-羟基-3-甲基-2-丁烯基焦磷酸还原酶基因的全长克隆与诱导表达分析[J]. 药学学报,2013(2): 236.
[45]  姜丹, 荣齐仙, 袁庆军,等. 白花丹参HDS基因的全长克隆与原核表达分析[J]. 药学学报, 2014,49(11): 6114.
[46]  Hao G, Shi R, Tao R, et al. Cloning, molecular characterization and functional analysis of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR) gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza Bge. f. alba[J]. Plant Physiol Biochem, 2013, 70(1): 21.
[47]  杨滢, 周露, 化文平,等. 丹参异戊烯焦磷酸异构酶基因(SmIPI)的生物信息学及表达分析[J]. 植物生理学报, 2011(11): 1086.
[48]  周露, 化文平, 杨滢,等. 丹参法呢基焦磷酸合酶基因(SmFPPS1)的表达模式[J]. 陕西师范大学学报: 自然科学版, 2013, 41(2): 70.
[49]  Hillwig M L, Xu M, Toyomasu T, et al. Domain loss has independently occurred multiple times in plant terpene synthase evolution[J]. Plant J Cell Mol Biol, 2011, 68(6): 1051.
[50]  Zhou K, Gao Y, Hoy J A, et al. Insights into diterpene cyclization from structure of bifunctional abietadiene synthase from Abies grandis[J]. J Biol Chem, 2012,287(9): 6840.
[51]  Gao W, Hillwig M L, Huang L, et al. A functional genomics approach to tanshinone biosynthesis provides stereochemical insights[J].Org Lett,2009,11: 5170.
[52]  Zhou Y J, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. J Am Chem Soc, 2012, 134(6): 3234.
[53]  Dai Z, Liu Y, Huang L, et al. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2012, 109(11): 2845.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133