Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843.
[2]
He S, Su H, Liu C, et al. MicroRNA-encoding long noncoding RNAs[J]. BMC Genomics, 2008, 9(1):236.
[3]
Mattick J S. The functional genomics of noncoding RNA[J]. Science, 2005, 309(5740): 1527.
[4]
Varshney R K, GranerA, Sorrells M E. Genic microsatellite markers in plants: features and applications[J]. Trend Biotechnol, 2005, 23(1): 48.
[5]
Wang W, Wang Y, Zhang Q, et al. Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing[J]. BMC genomics, 2009, 10(1): 465.
[6]
Soetaert S, Van Neste C M F, Vandewoestyne M L, et al. Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua[J]. BMC Plant Biol, 2013, 13(1): 220.
Wenping H, Yuan Z, Jie S, et al. De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients[J]. Genomics, 2011, 98(4): 272.
[9]
Yang L, Ding G, Lin H, et al. Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis[J]. PLoS ONE, 2013, 8(11): e80464.
[10]
Gao W, Sun H X, Xiao H, et al. Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza[J]. BMC Genomics, 2014, 15(1): 73.
[11]
Sun C, Li Y, Wu Q, et al. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium Platform to discover putative genes involved in ginsenoside biosynthesis[J]. BMC Genomics, 2010, 11(1): 262.
[12]
Wu D, Austin R S, Zhou S, et al. The root transcriptome for North American ginseng assembled and profiled across seasonal development[J]. BMC Genomics, 2013, 14(1): 564.
[13]
Zeng S, Xiao G, Guo J, et al. Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim[J]. BMC Genomics, 2010, 11(1): 94.
[14]
Ma Y, Zhao Y, Zhao R, et al. Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis[J]. Proteomics, 2010, 10(13): 2471.
[15]
van Bakel H, Stout J M, Cote A G, et al. The draft genome and transcriptome of Cannabis sativa[J]. Genome Biol, 2011, 12(10): R102.
[16]
Wu Q, Sun C, Luo H, et al. Transcriptome analysis of Taxus cuspidata needles based on 454 pyrosequencing[J]. Planta Med, 2011, 77(4): 394.
[17]
Barrero R A, Chapman B, Yang Y, et al. De novo assembly of Euphorbia fischeriana root transcriptome identifies prostratin pathway related genes[J]. BMC Genomics, 2011, 12(1): 600.
[18]
Tang Q, Ma X, Mo C, et al. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis[J]. BMC Genomics, 2011, 12(1): 343.
Yuan Y, Song L, Li M, et al. Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb[J]. BMC Genomics, 2012, 13(1): 195.
[21]
Gai S, Zhang Y, Mu P, et al. Transcriptome analysis of tree peony during chilling requirement fulfillment: assembling, annotation and markers discovering[J]. Gene, 2012, 497(2): 256.
[22]
Yin Y, Yu G, Chen Y, et al. Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris[J]. PLoS ONE, 2012, 7(12): e51853.
[23]
Yu G J, Wang M, Huang J, et al. Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome[J]. PLoS ONE, 2012, 7(8): e44031.
[24]
Fatima T, Snyder C L, Schroeder W R, et al. Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed[J]. PLoS ONE, 2012, 7(4): e34099.
[25]
Ghangal R, Chaudhary S, Jain M, et al. Optimization of de novo short read assembly of seabuckthorn (Hippophae rhamnoides L.) transcriptome[J]. PLoS ONE, 2013, 8(8): e72516.
[26]
Jain A, Chaudhary S, Sharma P C. Mining of microsatellites using next generation sequencing of seabuckthorn (Hippophae rhamnoides L.) transcriptome[J]. Physio Mol Biol Plants, 2014, 20(1): 115.
[27]
Wang W, Li C, Ge C, et al. De-novo characterization of the soft-shelled turtle Pelodiscus sinensis transcriptome using Illumina RNA-Seq technology[J]. J Zhejiang Univ SCI B, 2013, 14(1): 58.
[28]
Sun P, Song S, Zhou L, et al. Transcriptome analysis reveals putative genes involved in iridoid biosynthesis in Rehmannia glutinosa[J]. Ini>Catharanthus roseus RNA-Seq data[J]. Plant Cell Physiol, 2013, 54(5):673.ve transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea[J]. BMC genomics, 2012, 13(1): 15.
[29]
Wang Y, Yan H, Wang Y, et al. Proteomics and transcriptome analysis coupled with pharmacological test reveals the diversity of anti-thrombosis proteins from the medicinal insect, Eupolyphaga sinensis[J]. Insect Biochem Molec, 2012, 42(8): 537.
[30]
T Garzón-Martínez G A, Zhu Z I, Landsman D, et al. The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction[J]. BMC Genomics, 2012, 13(1): 151.
[31]
Ramilowski J A, Sawai S, Seki H, et al. Glycyrrhiza uralensis transcriptome landscape and study of phytochemicals[J]. Plant Cell Physiol, 2013, 54(5): 697.
[32]
Van Moerkercke A, Fabris M, Pollier J, et al. CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data[J]. Plant Cell Physiol, 2013: 54(5):673.
[33]
Zhao S, Tuan P A, Li X, et al. Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense[J]. BMC Genomics, 2013, 14(1): 802.
[34]
Zhang L, Jia H, Yin Y, et al. Transcriptome analysis of leaf tissue of Raphanus sativus by RNA sequencing[J]. PLoS ONE, 2013, 8(11): e80350.
[35]
Shu S, Chen B, Zhou M, et al. De novo sequencing and transcriptome analysis of Wolfiporia cocos to reveal genes related to biosynthesis of triterpenoids[J]. PLoS ONE, 2013, 8(8): e71350.
[36]
Jiang B, Xie D, Liu W, et al. De novo assembly and characterization of the transcriptome, and development of SSR markers in wax gourd (Benicasa hispida)[J]. PLoS ONE, 2013, 8(8): e71054.
[37]
Zheng X, Pan C, Diao Y, et al. Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae)[J]. BMC Genomics, 2013, 14(1): 490.
[38]
Zeng J, Liu Y, Liu W, et al. Integration of transcriptome, proteome and metabolism data reveals the alkaloids biosynthesis in Macleaya cordata and Macleaya microcarpa[J]. PLoS ONE, 2013, 8(1): e53409.
[39]
Qi J, Zheng N, Zhang B, et al. Mining genes involved in the stratification of paris Polyphylla seeds using high-throughput embryo transcriptome sequencing[J]. BMC Genomics, 2013, 14(1): 358.
[40]
Guo X, Li Y, Li C, et al. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers[J]. Gene, 2013, 527(1): 131.
[41]
Li C, Zhu Y, Guo X, et al. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng CA Meyer[J]. BMC Genomics, 2013, 14(1): 245.
[42]
Sangwan R S, Tripathi S, Singh J, et al. De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism[J]. Gene, 2013, 525(1): 58.
[43]
Xiang L, Li Y, Zhu Y, et al. Transcriptome analysis of the Ophiocordyceps sinensis fruiting body reveals putative genes involved in fruiting body development and cordycepin biosynthesis[J]. Genomics, 2014, 103(1): 154.
[44]
Wei L, Li S, Liu S, et al. Transcriptome analysis of Houttuynia cordata Thunb. by illumina paired-end RNA sequencing and SSR marker discovery[J]. PLoS ONE, 2014, 9(1): e84105.
Yuan Y, Long P, Jiang C, et al. Development and characterization of simple sequence repeat (SSR) markers based on a full-length cDNA library of Scutellaria baicalensis[J]. Genomics, 2015, 105(1):61.
[47]
Someren E P, Wessels L F A, Backer E, et al. Genetic network modeling[J]. Pharmacogenomics, 2002, 3(4): 507.
[48]
Van Moerkercke A, Fabris M, Pollier J, et al. CathaCyc, a metabolic pathway database built from <
[49]
Hao D C, Ge G B, Xiao P G, et al. The first insight into the tissue specific Taxus transcriptome via Illumina second generation sequencing[J]. PLoS ONE, 2011, 6(6): e21220.
[50]
Luo H, Sun C, Sun Y, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers[J]. BMC Genomics, 2011, 12(Suppl 5): S5.
[51]
Sui C, Zhang J, Wei J, et al. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins[J]. BMC Genomics, 2011, 12(1): 539.
[52]
Macagno E R, Gaasterland T, Edsall L, et al. Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes[J]. BMC Genomics, 2010, 11(1): 407.
[53]
Hao D C, Ma P, Mu J, et al. De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum[J]. Sci China:Life Sci, 2012, 55(5): 452.
[54]
Sun X, Zhou S, Meng F, et al. De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing[J]. Plant Cell Rep, 2012, 31(10): 1823.
[55]
He M, Wang Y, Hua W, et al. De novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites[J]. PloS ONE, 2012, 7(7): e42081.
[56]
Lulin H, Xiao Y, Pei S, et al. The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers[J]. PloS ONE, 2012, 7(6): e38653.
[57]
Gahlan P, Singh H R, Shankar R, et al. De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments[J]. BMC Genomics, 2012, 13(1): 126.
[58]
Zhou Y, Gao F, Liu R, et al. De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus[J]. BMC Genomics, 2012, 13(1): 266.