Yuan Q J, Zhang Z Y, Hu J, et al. Impacts of recent cultivation on genetic diversity pattern of a medicinal plant, Scutellaria baicalensis(Lamiaceae)[J]. BMC Genetics, 2010, 11:29.
[21]
Guo J, Zhou Y J, Hillwig M L, et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts[J]. Proc Natl Acad Sci USA, 2013, 110(29):12108.
[22]
Ajikumar P K, Xiao W H, Keith E J, et al. Escherichia coli precursor overproduction in isoprenoid pathway optimization for taxol[J]. Science, 2010, 330:70.
[23]
Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440:940.
[24]
Zhang L, Ding R, Chai Y, et al. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures[J]. Proc Natl Acad Sci USA, 2004, 101(17):6786.
Lee E K, Jin Y W, Park J H, et al. Cultured cambial meristematic cells as a source of plant natural products[J]. Nat Biotechnol, 2010, 28(11):1213.
[45]
Nicolaou K C, Hale C R H, Nilewski C, et al. Constructing molecular complexity and diversity:total synthesis of natural products of biological and medicinal importance[J]. Chem Soc Rev, 2012, 41(15):5185.
Martin V J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids [J]. Nat Biotechnol, 2003, 21(7):796.
[50]
Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(13):940.
[51]
Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496:528.
[52]
Zhou J W, Du G C, Chen J. Novel fermentation processes for manufacturing plant natural products[J]. Curr Opin Biotechnol, 2014, 25:17.
[53]
Yan Y J, Kohli A, Koffas M A. Biosynthesis of natural flavanones in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2005, 71(9):5610.
[54]
Trantas E, Panopoulos N, Ververidis F. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae[J]. Metab Eng, 2009, 11(6):355.
[55]
Santos C N, Koffas M, Stephanopoulos G. Optimization of a heterologous pathway for the production of flavonoids from glucose[J]. Metab Eng, 2011, 13(4):392.
[56]
Pollier J, Goossens A. Oleanolic acid[J]. Phytochemistry, 2012, 77(1):10.
[57]
Dai Z B, Wang B B, Liu Y, et al. Producing aglycons of ginsenosides in bakers\'yeast[J]. Sci Rep, 2014, 4:3698.
[58]
Dai Z B, Liu Y, Huang L Q, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides[J]. Metab Eng, 2013, 20:146.
[59]
Dai Z B, Liu Y, Huang L Q, et al. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2012, 109(11):2845.