Panza J A, Quyyumi A A, Brush J E Jr, et al. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension [J]. N Engl J Med, 1990, 323(1):22.
[2]
Morrell N W, Adnot S, Archer S L, et al. Cellular and molecular basis of pulmonary arterial hypertension [J]. J Am Coll Cardiol, 2009, 54(1):S20.
[3]
Cheever K H. An overview of pulmonary arterial hypertension:risks, pathogenesis, clinical manifestations, and management [J]. J Cardiovasc Nurs, 2005, 20(2):108.
[4]
Mittal M, Roth M,Konig P, et al. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature [J]. Circ Res, 2007, 101(3):258.
[5]
Fresquet F, Pourageaud F, Leblais V, et al. Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia [J]. Br J Pharmacol, 2006, 148(5):714.
Miyawaki T, Aono H, Toyoda-Ono Y, et al. Antihypertensive effects of sesamin in humans [J]. J Nutr Sci Vitaminol (Tokyo), 2009, 55(1):87.
[8]
Kiso Y. Antioxidative roles of sesamin, a functional lignan in sesame seed, and it\'s effect on lipid-and alcohol-metabolism in the liver:a DNA microarray study [J]. Biofactors,2004, 21(1/4):191.
[9]
Kong X, Yang J R, Guo L Q, et al. Sesamin improves endothelial dysfunction in renovascular hypertensive rats fed with a high-fat, high-sucrose diet [J]. Eur J Pharmacol,2009, 620(1/3):84.
Zhang J X, Yang J R, Chen G X, et al. Sesamin ameliorates arterial dysfunction in spontaneously hypertensive rats via downregulation of NADPH oxidase subunits and upregulation of eNOS expression [J]. Acta Pharmacol Sin,2013, 34(7):912.
[12]
Archer S, Rich S. Primary pulmonary hypertension:a vascular biology and translational research "Work in progress" [J]. Circulation, 2000,102(22):2781.
[13]
Sakao S, Tatsumi K. Vascular remodeling in pulmonary arterial hypertension:multiple cancer-like pathways and possible treatment modalities [J]. Int J Cardiol, 2011, 147(1):4.
[14]
Riley D J, Thakker V S,Wilson F J, et al. Role of proteolysis and apoptosis in regression of pulmonary vascular remodeling [J]. Physiol Res, 2000, 49(1):577.
[15]
Wilson D W, Segall H J, Pan L C, et al. Mechanisms and pathology of monocrotaline pulmonary toxicity [J]. Crit Rev Toxicol, 1992, 22(5/6):307.
[16]
Liu J Q, Zelko I N, Erbynn E M, et al. Hypoxic pulmonary hypertension:role of superoxide and NADPH oxidase (gp91phox) [J]. Am J Physiol Lung Cell Mol Physiol, 2006, 290(1):L2.
[17]
Hoshikawa Y, Ono S, Suzuki S, et al. Generation of oxidative stress contributes to the development of pulmonary hypertension induced by hypoxia [J]. J Appl Physiol, 2001, 90(4):1299.
[18]
Manea A. NADPH oxidase-derived reactive oxygen species:involvement in vascular physiology and pathology [J]. Cell Tissue Res, 2010, 342(2):325.
[19]
Yang D L, Zhang H G, Xu Y L, et al. Resveratrol inhibits right ventricular hypertrophy induced by monocrotaline in rats [J]. Clin Exp Pharmacol Physiol, 2010, 37(2):150.
[20]
Wedgwood S, Lakshminrusimha S, Czech L, et al. Increased p22 (phox)/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn [J]. Antioxid Redox Signal,2013, 18(14):1765.