全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

辽细辛中十二碳四烯酰胺A,B的定性及定量分析研究

Keywords: 辽细辛,HPLC-IT-TOF-MS/MS,UPLC,十二碳四烯酰胺A,十二碳四烯酰胺B

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立辽细辛中2个主要的直链酰胺成分十二碳四烯酰胺A与十二碳四烯酰胺B的定性与定量分析方法,并测定其在42份辽细辛(37份不同年份收集的北细辛及5份汉城细辛)中的含量.利用HPLC-IT-TOF-MS/MS技术结合对照品鉴定北细辛甲醇提取液中的十二碳四烯酰胺A与B;对2种成分的含量测定采用超高效液相色谱-二极管阵列检测器(UPLC-PDA),ACQUITYUPLCBEHC18色谱柱(2.1mm×100mm,1.7μm),流动相为纯水-乙腈,梯度洗脱,柱温45℃,检测波长254nm.结果表明,HPLC-IT-TOF-MS/MS鉴别细辛中十二碳四烯酰胺A、B的准分子离子[M+H]+为m/z248.20;2种成分在UPLC-PDA上分离度良好,在检测范围内呈良好线性,平均加样回收率为97.90%和99.86%.在所测定辽细辛样品中,十二碳四烯酰胺A的含量为0.11~3.89mg·g-1,十二碳四烯酰胺B为0.24~6.65mg·g-1.含量测定结果显示随着贮藏时间的延长,十二碳四烯酰胺A与十二碳四烯酰胺B的含量均呈现降低的趋势,与2013年收集样品相比,2002~2003年收集样品中两者的平均含量分别降低34%和36%;这2种成分在汉城细辛中的平均含量[十二碳四烯酰胺A:(0.78±0.52)mg·g-1;十二碳四烯酰胺B:(1.69±0.83)mg·g-1]均显著低于北细辛[十二碳四烯酰胺A:(1.59±0.75)mg·g-1;十二碳四烯酰胺B:(2.90±1.17)mg·g-1](P<0.05);辽细辛地上部分十二碳四烯酰胺A的含量为0.11~0.33mg·g-1,十二碳四烯酰胺B含量为0.24~0.60mg·g-1,两者的含量均明显低于同一植株的地下部分(分别为0.73~3.89,2.11~6.24mg·g-1).本方法快速简便、结果准确,对2种直链酰胺类成分可达到良好的分离并满足含量测定的要求,可用于辽细辛药材中这2种成分的定性与定量分析,为辽细辛药材质量控制方法的进一步提高提供依据.

References

[1]  赵欣捷,汪江山,许国旺. UPLC、整体柱与传统液相色谱三种技术的比较[C]. 郑州:中国化学会·第十五次全国色谱学术报告会, 2005.
[2]  金郁,薛兴亚,肖远胜,等. 中药复杂样品高效液相色谱和超高效液相色谱分析条件转换方法[J]. 世界科学技术——中医药现代化, 2008(1):80.
[3]  Wu S, Sun C, Pei S, et al. Preparative isolation and purification of amides from the fruits of Piper longum L. by upright counter-current chromatography and reversed-phase liquid chromatography[J]. J Chromatogr A, 2004,1040(2):193.
[4]  Thomsen M O, Frette X C, Christensen K B, et al. Seasonal variations in the concentrations of lipophilic compounds and phenolic acids in the roots of Echinacea purpurea and Echinacea pallida[J]. J Agric Food Chem, 2012, 60(49):12131.
[5]  橋本和則, 岡田稔, 丸野正雄. 細辛の原植物の成份分析[J]. Nat Med, 1994, 48(1):39.
[6]  中国药典. 一部[S]. 2010.
[7]  蔡少青,李军.常用中药材品种整理与质量研究[M]. 北京:北京医科大学出版社,2001.
[8]  田珍, 董善年, 王宝荣,等. 国产细辛属植物中挥发油的成分鉴定——Ⅰ辽细辛的挥发油[J]. 北京医学院学报,1981(3):179.
[9]  Choi E H, Choi J Y, Lee J G, et al. Isolation of melanin biosynthesis inhibitory compounds from the roots of Asarum sieboldii[J]. Korean J Pharmacognosy, 2007, 38(4):394.
[10]  Yasuda I, Takeya K, Itokawa H. Structures of amides from Asiasarum heterotropoides Mark var. mandshuricum Maek [J]. Chem Pharm Bull,1981,29(2):564.
[11]  Quang T H, Ngan N T, Minh C V, et al. Anti-inflammatory and PPAR transactivational effects of secondary metabolites from the roots of Asarum sieboldii[J]. Bioorg Med Chem Lett, 2012,22(7):2527.
[12]  Li C, Xu F, Xie D, et al. Identification of absorbed constituents in the Rabbit Plasma and Cerebrospinal Fluid after intranasal administration of Asari Radix et Rhizoma by HS-SPME-GC-MS and HPLC-APCI-IT-TOF-MSn[J]. Molecules, 2014,19(4):4857.
[13]  Matovic N, Matthias A, Gertsch J, et al. Stereoselective synthesis, natural occurrence and CB(2) receptor binding affinities of dodecatetraenamides from herbal medicines such as Echinacea sp[J]. Org Biomol Chem, 2007,5(1):169.
[14]  Spelman K, Wetschler M H, Cech N B. Comparison of dodecatetraenamide yield in ethanolic extracts prepared from fresh versus dry Echinacea purpurea utilizing HPLC-ESI-MS[J]. J Pharm Biomed Anal, 2009, 49(5):1141.
[15]  Boonen J, Baert B, Roche N, et al. Transdermal behaviour of the N-dodecatetraenamide spilanthol(affinin) from Spilanthes acmella(Compositae) extracts[J]. J Ethnopharmacol, 2010,127(1):77.
[16]  Chakraborty A, Devi R, Rita S, et al. Local anaesthetic effect of Spilanthes acmella in experimental animal models[J]. Indian J Pharmacol, 2002, 34:144.
[17]  Gbewonyo W S, Candy D J, Anderson M. Structure-activity relationships of insecticidal amides from Piper guineense root[J]. Pest Sci,1993,37(1):57.
[18]  Boonen J, Bronselaer A, Nielandt J, et al. Alkamid database:chemistry, occurrence and functionality of plant N-dodecatetraenamides[J]. J Ethnopharmacol, 2012, 142(3):563.
[19]  Jang K H, Chang Y H, Kim D D, et al. New polyunsaturated fatty acid amides isolated from the seeds of Zanthoxylum piperitum[J]. Arch Pharm Res, 2008, 31(5):569.
[20]  Quang T H, Ngan N T, Minh C V, et al. Anti-inflammatory and PPAR transactivational effects of secondary metabolites from the roots of Asarum sieboldii[J]. Bioorg Med Chem Lett, 2012, 22(7):2527.
[21]  Greger H. Alkamides:structural relationships, distribution and biological activity[J]. Planta Med, 1984, 50(5):366.
[22]  Hashimoto K, Yanagisawa T, Okui Y, et al. Studies on anti-allergic components in the roots of Asiasarum sieboldi[J]. Planta Med, 1994, 60(2):124.
[23]  Han A R, Kim H J, Shin M, et al. Constituents of Asarum sieboldii with inhibitory activity on lipopolysaccharide(LPS)-induced NO production in BV-2 microglial cells[J]. Chem Biodivers, 2008, 5(2):346.
[24]  Matovic N, Matthias A, Gertsch J, et al. Stereoselective synthesis, natural occurrence and CB(2) receptor binding affinities of dodecatetraenamides from herbal medicines such as Echinacea sp[J]. Org Biomol Chem, 2007, 5(1):169.
[25]  Mudge E, Lopes-Lutz D, Brown P, et al. Analysis of dodecatetraenamides in Echinacea plant materials and dietary supplements by ultrafast liquid chromatography with diode array and mass spectrometric detection[J]. J Agric Food Chem, 2011, 59(15):8086.
[26]  Gocan S, Radu L, Hadaruga M. Simultaneous analysis by high performance liquid chromatography of hydrophilic compounds and lipophilic compounds(alkamides) from pharmaceutical preparations of Echinacea purpurea root[J]. Chromatographia, 2003, 57(9/10):677.
[27]  Lopes-Lutz D, Mudge E, Ippolito R, et al. Purification of dodecatetraenamides from Echinacea angustifolia(DC.) Hell roots by high-speed countercurrent chromatography[J]. J Agric Food Chem, 2011, 59(2):491.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133