Li S, Zhang Z Q, Wu L J, et al. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network[J]. Syst Biol, 2007,1(1):51.
[2]
Prado-Prado F J, Uriarte E, Borges F, et al. Multi-target spectral moments for QSAR and complex networks study of antibacterial drugs[J]. Eur J Med Chem, 2009,44(11):4516.
[3]
Wishart D S. Discovering drug targets through the web[J]. Comp Biochem Physiol D: Genomics Proteomics, 2007,2(1):9.
[4]
Yao X, Hao H, Li Y, et al. Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network[J]. BMC Syst Biol, 2011,5(1):79.
[5]
Zhao J, Jiang P, Zhang W. Molecular networks for the study of TCM Pharmacology[J]. Brief Bioinform, 2010,11(4):417.
[6]
Tala B. Properties and identification of antibiotic drug targets[J]. BMC Bioinformatics, 2010,11(1):195.
[7]
Doyle M, Gasser R, Woodcroft B, et al. Drug target prediction and prioritization: using orthology to predict essentiality in parasite genomes[J]. BMC Genomics, 2010,11(1):222.
[8]
Wu X, Jiang R, Zhang M Q, et al. Network-based global inference of human disease genes[J]. Mol Syst Biol,2008,4(1):189.
[9]
Chu L H, Chen B S. Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets[J]. BMC Syst Biol, 2008,2(1):56.
[10]
Keshava Prasad T S, Goel R, Kandasamy K, et al. Human protein reference database—2009 update[J]. Nucleic Acids Res, 2009,37(suppl 1):D767.
[11]
Bader G D, Betel D, Hogue C W V. BIND: the biomolecular interaction network database[J]. Nucleic Acids Res, 2003,31(1):248.
[12]
Alfarano C, Andrade C E, Anthony K, et al. The biomolecular interaction network database and related tools 2005 update[J]. Nucleic Acids Res, 2005,33(suppl 1):D418.
[13]
Xenarios I, Salwinski L, Duan X J, et al. DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions[J]. Nucleic Acids Res, 2002,30(1):303.
[14]
Aranda B, Achuthan P, Alam-Faruque Y, et al. The IntAct molecular interaction database in 2010[J]. Nucleic Acids Res, 2010,38(suppl 1):D525.
[15]
Ceol A, Chatr Aryamontri A, Licata L, et al. MINT, the molecular interaction database: 2009 update[J]. Nucleic Acids Res, 2010,38(suppl 1):D532.
[16]
Csermely P, Agoston V, Pongor S. The efficiency of multi-target drugs: the network approach might help drug design[J]. Trends Pharmacol Sci, 2005,26(4):178.
[17]
Andrés F, Daeui P, Jong B, et al. Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection[J]. BMC Bioinformatics, 2010,11:484.
[18]
Hamosh A, Scott A F, Amberger J S, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders[J]. Nucleic Acids Res, 2005,33(suppl 1):D514.
[19]
Knox C, Law V, Jewison T, et al. DrugBank 3. 0: a comprehensive resource for \'Omics\' research on drugs[J]. Nucleic Acids Res, 2011,39(suppl 1):D1035.
[20]
Pedro C, Ney L. A machine learning approach for genome-wide prediction of morbid and druggable human genes based on systems-level data[J]. BMC Genomics, 2010,11(S5):S9.
[21]
Xu J, Li Y. Discovering disease-genes by topological features in human protein-protein interaction network[J]. Bioinformatics, 2006,22(22):2800.
[22]
Zhou D, Bousquet O, Lal T N, et al. Learning with local and global consistency[J]. Adv Neural Inform Proc Syst, 2004,16:321.
[23]
Gui J, Huang D S, You Z. An improvement on learning with local and global consistency[C]. Tampa: 19th International Conference on IEEE,2008.
[24]
Li M, Zhang X, Wang X. An improved learning with local and global consistency[C]. Xuzhou:Control and Delision Conference of IEEE, 2010.