Rosenbaum P R, Rubin D B. The central role of the propensity score in observational studies for causal effects[J]. Biometrika, 1983, 70(1): 41.
[4]
Hirano K, Imbens G. Estimation of causal effects using propensity score weighting: an application to data on right heart catheterization[J]. Health Services Outcomes Res Methodol, 2001,70(2): 259.
[5]
Wooldridge J. Econometric analysis of cross section and panel data[M]. Cambridge: MIT Press, 2001.
[6]
McCaffrey D F, Ridgeway G, Morral A R. Propensity score estimation with boosted regression for evaluating causal effects in observational studies[J].Psychol Methods, 2004, 9(4): 403.
[7]
Alex ZFu. 倾向得分法综述[J]. 中国药物经济学, 2008, 15(2): 259.
[8]
Shadish W R, Cook T D, Campbell D T. Experimental and quasi-experimental designs for generalized causal inference[M]. Boston: Houghton-Mifflin, 2002.
[9]
Harder V S, Stuart E A, Anthony J. Propensity score techniques and the assessment of measured covariate balance to test causal associationsin psychological research[J]. Psychol Methods, 2010, 15(3): 234.
[10]
Stuart E A. Matching methods for causal inference: a review and a look forward[J]. Stat Sci, 2010, 25(1): 1.
[11]
Friedman J H, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of Boosting[J]. Annals Stat, 2000, 28: 337.
[12]
GRidgeway D, McCaffrey A, Morral. Toolkit for weighting and analysis of nonequivalent groups: a tutorial for the twang package. package manual[EB/OL]. 2010-01.http://cran.r-project.org/src/contrib/Archive/twang.
[13]
Friedman J H. Greedy function approximation: A gradient Boosting machine[J]. Annals Stat, 2001, 29: 1189.
[14]
Huppler-Hullsiek K, Louis T A. Propensity score modeling strategies for the causal analysis of observational data[J]. Biostatistics, 2002, 2: 1.
[15]
Rosenbaum P. Observational studies [M].2nd. New York: Springer-Verlag, 2002.