全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黄连碱药理活性研究进展

Keywords: 黄连碱,药理活性,研究进展

Full-Text   Cite this paper   Add to My Lib

Abstract:

黄连碱是一种天然的原小檗碱型生物碱季铵盐,存在于毛茛科和罂粟科的多种植物中,资源丰富。尽管有关黄连碱的药理研究还不深入,但已有文献报道其有抑制A型单胺氧化酶、选择性抑制和双重抑制血管平滑肌细胞增殖、抑制破骨细胞分化和功能、选择性调节血管平滑肌细胞中的多药耐药蛋白质、抗真菌、胃黏膜保护、细胞毒、心肌保护等一些药理活性。鉴于目前缺少对黄连碱研究的系统回顾和综述,该文对近年来发表的黄连碱药理活性研究文献进行整理和分析,为深入开展以药理活性为基础的黄连碱创新药物研究提供信息。

References

[1]  Lee M K, Lee K S, Kim H S, et al. Inhibitory effects of coptisine on monoamine oxidase activity[J]. Nat Prod Sci, 2000, 6: 70.
[2]  Lee S S, Yoon-Choi H S, Kim E I, et al. Inhibition of monoamine oxidase by higenamine[J]. Med Sci Res, 1999, 27: 71.
[3]  Ross R. Atherosclerosis——an inflammatory disease[J]. N Engl J Med,1999,340:115.
[4]  Tanabe H, Suzuki H, Nagatsu A, et al. Selective inhibition of vascular smooth muscle cell proliferation by coptisine isolated from Coptis Rhizoma, one of the crude drugs composing Kampo medicines Unsei-in[J]. Phytomedicine, 2006, 13: 334.
[5]  Zhan Y H, Fang L H, Ku B S. Fangchinoline inhibits rat aortic vascular smooth muscle cell proliferation and cell cycle progression through inhibition of ERK1/2 activation and c-fos expression[J]. Biochem Pharmacol, 2003, 66: 1853.
[6]  Ferri, N, Yokoyama K, Sadilek M, et al. Ajoene, a garlic compound, inhibits protein prenylation and arterial smooth muscle cell proliferation[J]. Br J Pharmacol, 2003, 138: 811.
[7]  Kobayashi S, Mimura Y, Notoya K, et al. Antiproliferative effects of the traditional Chinese medicine Shimotsu-to, its component cnidium rhizoma and derived compounds on primary cultures of mouse aorta smooth muscle cells[J]. Jpn J Pharmcol,1992, 60: 397.
[8]  Alcocer F, Whitley D, Salazar-Gonzalez J F, et al. Quercetin inhibits human vascular smooth muscle cell proliferation and migration[J]. Surgery, 2002, 131: 198.
[9]  Batovska D, Parushev S, Slavova A, et al. Study on the substituents\'effects of a series of synthetic chalcones against the yeast Candida albicans[J]. Eur J Med Chem, 2007, 42: 87.
[10]  周伟澄,周后元.唑类抗真菌药的合成评述[J].中国医药工业杂志,2006,37(2): 125.
[11]  冷萍,郭秀丽,杨月,等.羽苔素E体外抗真菌活性及逆转氟康唑耐药的初步研究[J].中国药学杂志,2007,42(5): 349.
[12]  Kong W J, Zhao X H, Xiao X H, et al. Investigation of the anti-fungal activity of coptisine on Candida albicans growth by microcalorimetry combined with principal component analysis[J]. J App Micro, 2009, 107: 1072.
[13]  Iwasa K, Kamigauchi M, Ueki M, et al. Antibacterial activity and structure-activity relationships of berberine analogs[J]. Eur J Med Chem, 1996, 31: 469.
[14]  Donlan R M, Costerton J W. Biofilms: survival mechanisms of clinically relevant microorganisms[J]. Clin Microbiol Rev, 2002, 15: l67.
[15]  Chau V Q, Salloum F N, Hoke N N, et al. Mitigation of the progression of heart failure with sildenafil involves inhibition of RhoA/Rho-kinase pathway[J]. Am J Physiol Heart Circ Physiol, 2011, 300: H2272.
[16]  Nagatsu T, Yamamoto T, Harada M. Purification and properties of human brain mitochondrial monoamine oxidase[J]. Enzymologia, 1970, 39: 15.
[17]  Tipton K F, O\'Carroll A M, McCrodden J M. The catalytic behavior of monoamine oxidase[J]. J Neural Transm(Suppl), 1987, 23: 25.
[18]  Severina I S. "Mechanism of selective inhibition by clorgyline and deprenyl of the possible nature of its form A and B" in monoamine oxidase: structure, function, and altered functions[M]. New York: Academic Press, 1979: 169.
[19]  Deniker P. The search for new antidepressants and related drugs, in monoamine oxidase and diseases, prospects for therapy with reversible inhibitors[M]. New York: Academic Press, 1984: 3.
[20]  Ro J S, Lee S S, Lee K S, et al. Inhibition of type A monoamine oxidase by coptisine in mouse brain[J]. Life Sci, 2001, 70: 639.
[21]  Lee S S, Kai M, Lee M K. Effects of natural isoquinoline alkaloids on monoamine oxidase activity in mouse brain: inhibition by berberine and palmatine[J]. Med Sci Res, 1999, 27: 749.
[22]  Shin J S, Kim E I, Kai M, et al. Inhibition of dopamine biosynthesis by protoberberine alkaloids in PC12 cells[J]. Neurochem Res, 2000, 25: 363.
[23]  Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation[J]. Bone, 2007, 40: 251.
[24]  Arai F, Miyamoto T, Ohneda O, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor κB (RANK) receptors[J]. J Exp Med, 1999, 190(12): 1741.
[25]  Boyle W J, Simonet W S, Lacey D L. Osteoclast differentiation and activation[J]. Nature, 2003, 423: 337.
[26]  Hofbauer L C, Khosla S, Dunstan C R, et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption[J]. J Bone Miner Res, 2000, 15: 2.
[27]  Udagawa N, Takahashi N, Yasuda H, et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function[J]. Endocrinology, 2000, 141: 3478.
[28]  Ji W L, Ayumi I, Shin-ichi H, et al. Coptisine inhibits RANKL-induced NF-κB phosphorylation in osteoclast precursors and suppresses function through the regulation of RANKL and OPG gene expression in osteoblastic cells[J]. J Nat Med, 2012, 66: 8.
[29]  Suda T, Takahashi N, Udagawa N, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families[J]. Endocr Rev, 1999, 20: 345.
[30]  Chang E J, Kim H J, Ha J, et al. Hyaluronan inhibits osteoclast differentiation via Toll-like receptor 4[J]. J Cell Sci, 2007, 120: 166.
[31]  Tanabe H, Suzuki H, Inoue M, et al. Double blockade of cell cycle progression by coptisine in vascular smooth muscle cells[J]. Biochem Pharmacol, 2005, 70: 1176.
[32]  Hiroka S, Hiroki T, Hajinme M, et al. Selective regulation of multidrug resistance protein in vascular smooth muscle cells by the isoquinoline alkaloid coptisine[J]. Biol Pharm Bull, 2010, 33: 677.
[33]  杨勇,叶小利,李学刚. 4种黄连生物碱的抑菌作用[J].时珍国医国药,2007,18(12): 3013.
[34]  Korkmaz S, Radovits T, Barnucz E, et al. Pharmacological activation of soluble guanylate cyclase protects the heart against ischemic injury[J]. Circulation, 2009, 120: 677.
[35]  Hattori T, Shimokawa H, Higashi M, et al. Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice[J]. Circulation, 2004, 109: 2234.
[36]  Satoh K, Fukumoto Y, Shimokawa H. Rho-kinase: important new therapeutic target in cardiovascular diseases[J]. Am J Physiol Heart Circ Physiol, 2011, 301: H287.
[37]  Chandra S, Romero M, Shatanawi A, et al. Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway[J]. Br J Pharmacol, 2012, 165: 506.
[38]  Noma K, Goto C, Nishioka K, et al. Roles of rho-associated kinase and oxidative stress in the pathogenesis of aortic stiffness[J]. J Am Coll Cardiol, 2007, 49: 698.
[39]  Yatani A, Irie K, Otani T, et al. RhoA GTPase regulates L-type Ca currents in cardiac myocytes[J]. Am J Physiol Heart Circ Physiol, 2005, 288: H650.
[40]  Gong L L, Fang L H, Wang S B, et al. Coptisine exert cardioprotective effect through anti-oxidative and inhibition of RhoA/Rho kinase pathway on isoproterenol-induced myocardial infarction in rats[J]. Atherosclerosis, 2012, 222: 50.
[41]  Hirano H, Osawa E, Yamaoka Y, et al. Gastric-mucous membrane protection activity of coptisine derivatives[J]. Biol Pharm Bull, 2001, 24: 1277.
[42]  李峰,张浩,华桦,等.黄连碱对应激所致小鼠胃黏膜损伤的保护作用[J].华西药学杂志,2007,22(6): 713.
[43]  Maria L C, Carlo B, Andrea M, et al. Cytotoxicity evaluation of natural coptisine and synthesis of coptisine from berberine[J]. Farmaco, 2001, 56: 403.
[44]  陈柏年,于晓彦,孙加琳,等.黄连碱对L-NAME诱导高血压大鼠胸主动脉功能的影响[J].中国药理学通报,2011,27(5): 610.
[45]  蒋小飞,李学刚,汤琳,等. 8-烷基黄连碱同系物的合成及体外降糖作用[J].中草药,2011,42(4): 640.
[46]  Wu J B, Lei F, Cui X J, et al. Design, synthesis and multidrug resistance reversal activity evaluation of 8-oxocoptisine derivatives[J]. Med Chem, 2012, 8: 742.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133